2024/12/15 更新

写真a

タニグチ ヤストシ
谷口 靖憲
所属
理工学術院 理工学術院総合研究所
職名
次席研究員(研究院講師)
学位
博士 (工学) ( 2024年03月 早稲田大学 )

経歴

  • 2024年04月
    -
    継続中

    早稲田大学   理工学術院総合研究所   次席研究員   研究員講師

学歴

  • 2021年04月
    -
    2024年03月

    早稲田大学   大学院創造理工学研究科   総合機械工学専攻  

  • 2019年04月
    -
    2021年03月

    早稲田大学   大学院基幹理工学研究科   機械科学・航空宇宙専攻  

  • 2015年04月
    -
    2019年03月

    早稲田大学   基幹理工学部   機械科学・航空学科  

所属学協会

  • 2021年09月
    -
    継続中

    日本応用数理学会

  • 2021年05月
    -
    継続中

    日本計算工学会

  • 2019年02月
    -
    継続中

    日本機械学会

研究分野

  • 材料力学、機械材料   構造力学、アイソジオメトリック解析

研究キーワード

  • 構造解析

  • 計算力学

  • 有限要素解析

  • アイソジオメトリック解析

  • 構造力学

受賞

  • スカラーシップアワード (2023年度)

    2023年06月   日本計算工学会  

 

論文

  • A hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress: II. An isogeometric discretization method for incompressible materials

    Yasutoshi Taniguchi, Kenji Takizawa, Yuto Otoguro, Tayfun E. Tezduyar

    Computational Mechanics    2024年04月

     概要を見る

    <jats:title>Abstract</jats:title><jats:p>This is <jats:italic>Part II</jats:italic> of a multipart article on a hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress. We introduce an isogeometric discretization method for incompressible materials and present test computations. Accounting for the out-of-plane normal stress distribution in the out-of-plane direction affects the accuracy in calculating the deformed-configuration out-of-plane position, and consequently the nonlinear response of the shell. The return is more than what we get from accounting for the out-of-plane deformation mapping. The traction acting on the shell can be specified on the upper and lower surfaces separately. With that, the model is now free from the “midsurface’ location in terms of specifying the traction. In dealing with incompressible materials, we start with an augmented formulation that includes the pressure as a Lagrange multiplier and then eliminate it by using the geometrical representation of the incompressibility constraint. The resulting model is an extended one, in the Kirchhoff–Love category in the degree-of-freedom count, and encompassing all other extensions in the isogeometric subcategory. We include ordered details as a recipe for making the implementation practical. The implementation has two components that will not be obvious but might be critical in boundary integration. The first one is related to the edge-surface moment created by the Kirchhoff–Love assumption. The second one is related to the pressure/traction integrations over all the surfaces of the finite-thickness geometry. The test computations are for dome-shaped inflation of a flat circular shell, rolling of a rectangular plate, pinching of a cylindrical shell, and uniform hydrostatic pressurization of the pinched cylindrical shell. We compute with neo-Hookean and Mooney–Rivlin material models. To understand the effect of the terms added in the extended model, we compare with models that exclude some of those terms.</jats:p>

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • A computational model of red blood cells using an isogeometric formulation with T-splines and a lattice Boltzmann method

    Yusuke Asai, Shunichi Ishida, Hironori Takeda, Gakuto Nakaie, Takuya Terahara, Yasutoshi Taniguchi, Kenji Takizawa, Yohsuke Imai

    Journal of Fluids and Structures   125  2024年03月

    DOI

    Scopus

  • Isogeometric boundary element analysis of creasing of capsule in simple shear flow

    Hironori Takeda, Yusuke Asai, Shunichi Ishida, Yasutoshi Taniguchi, Takuya Terahara, Kenji Takizawa, Yohsuke Imai

    Journal of Fluids and Structures   124  2024年01月

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • An Extended Kirchhoff–Love Shell Model with Out-of-Plane Normal Stress: Out-of-Plane Deformation

    Taniguchi, Y., Takizawa, K., Otoguro, Y., Tezduyar, T.E.

    Modeling and Simulation in Science, Engineering and Technology   Part F1665  2023年

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • A hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress: I. Out-of-plane deformation

    Yasutoshi Taniguchi, Kenji Takizawa, Yuto Otoguro, Tayfun E. Tezduyar

    Computational Mechanics   70 ( 2 )  2022年08月

     概要を見る

    <jats:title>Abstract</jats:title><jats:p>This is the first part of a two-part article on a hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress. We present the derivation of the new model, with focus on the mechanics of the out-of-plane deformation. Accounting for the out-of-plane normal stress distribution in the out-of-plane direction affects the accuracy in calculating the deformed-configuration out-of-plane position, and consequently the nonlinear response of the shell. The improvement is beyond what we get from accounting for the out-of-plane deformation mapping. By accounting for the out-of-plane normal stress, the traction acting on the shell can be specified on the upper and lower surfaces separately. With that, the new model is free from the “midsurface” location in terms of specifying the traction. We also present derivations related to the variation of the kinetic energy and the form of specifying the traction and moment acting on the upper and lower surfaces and along the edges. We present test computations for unidirectional plate bending, plate saddle deformation, and pressurized cylindrical and spherical shells. We use the neo-Hookean and Fung’s material models, for the compressible- and incompressible-material cases, and with the out-of-plane normal stress and without, which is the plane-stress case.</jats:p>

    DOI

    Scopus

    23
    被引用数
    (Scopus)

書籍等出版物

  • ACM 2023参加報告

    日本計算工学会( 担当: 分担執筆,  担当範囲: Vol. 29, pp38-39)

    2024年

 

担当経験のある科目(授業)

  • プログラミング演習

    武蔵野大学  

    2024年11月
    -
    継続中
     

  • 情報処理

    武蔵野大学  

    2024年09月
    -
    継続中