本年度は,係数行列がそれぞれ単調行列・対称行列・正定値行列であるような連立一次方程式の数値解の精度保証,その保証精度の高精度化,そして分散型並列計算機(PC cluster)上での連立一次方程式の数値解の精度保証に関する研究を行った。その研究成果の発表(講演)は以下のようである。1. 単調な疎行列における連立一次方程式の数値解の高精度保証, 第30回数値解析シンポジウム(NAS2001) (2001/5/23-25) 2. 反復解法による連立一次方程式の数値解の高速精度保証, 日本シミュレーション学会大会 (2001/6/20-21) 3. Fast inclusion and residual iteration for solutions of matrix equations, International Conference on RECENT ADVANCES IN COMPUTATIONAL MATHEMATICS (ICRACM2001) (October 10-13 2001)4. PCクラスタ上での連立一次方程式の解の精度保証(パネラー), 電子情報通信学会ソサイエティ大会 (2001/9/18-21)5. Fast verification of solutions for symmetric matrix equations, The International Conference on Fundamental of Electronics Communication and Computer Sciences (March 27-28 2002)1では,係数行列が単調行列である場合を例にして,提案する精度保証法が数値解の本来持っている精度を高速かつほぼ正確に保証できることを示した。2では,係数行列が疎行列のとき,その連立一次方程式は反復解法で解くことが多いが,そのような場合でも行列が特殊な構造を持っているときは精度保証も可能であることを示した。3では,1をさらに発展させ,精度保証と残差反復を組み合わせた新しい方法を示した。4では,これまでの研究成果が分散型並列計算機上にも適用可能であるが,しかし,計算の大規模化によって新たな問題点が生まれることも示した。5では,係数行列が対称行列あるいは正定値対称行列であるような連立一次方程式の数値解の精度保証法を提案した。これは,特に現実的な物理モデルの問題に対して有効である。
Click to view the Scopus page. The data was downloaded from Scopus API in December 03, 2024, via http://api.elsevier.com and http://www.scopus.com .