2023/10/01 更新

写真a

オクムラ カツヒコ
奥村 克彦
所属
理工学術院 基幹理工学部
職名
講師(任期付)
学位
博士(理学) ( 2022年03月 早稲田大学 )

研究分野

  • 代数学   代数幾何学
 

論文

  • SNC Log Symplectic Structures on Fano Products

    Katsuhiko Okumura

    Canadian Mathematical Bulletin   63 ( 4 ) 891 - 900  2020年12月

     概要を見る

    <title>Abstract</title>This paper classifies Poisson structures with the reduced simple normal crossing divisor on a product of Fano varieties of Picard number 1. The characterization of even-dimensional projective spaces from the viewpoint of Poisson structures is given by Lima and Pereira. In this paper, we generalize the characterization of projective spaces to any dimension.

    DOI

  • A classification of SNC log symplectic structures on blow-up of projective spaces

    Katsuhiko Okumura

    Letters in Mathematical Physics   110 ( 10 ) 2763 - 2778  2020年10月

    DOI

    Scopus

共同研究・競争的資金等の研究課題

  • 二次超曲面と射影空間を特徴づける対数的シンプレクティック構造の構成

    日本学術振興会  科学研究費助成事業 研究活動スタート支援

    研究期間:

    2021年08月
    -
    2023年03月
     

    奥村 克彦

 

現在担当している科目

▼全件表示

 

特定課題制度(学内資金)

  • 点のヒルベルトスキームを用いたSNCログシンプレクティック構造の構成

    2022年  

     概要を見る

    点のヒルベルトスキームを用いたSNCログシンプレクティック構造の構成よりも、SNCログシンプレクティック構造の一般化であるVNCログシンプレクティック構造の研究に注力していた。現在知られているSNCログシンプレクティック構造がほとんどないという現状がある。これら二つの課題はどのようにすれば新しい例を構成できるか、という着眼点を共有している。この研究は現在進行中である。さらに、射影空間束の構造を持つ4次元多様体上のSNCログシンプレクティック構造の分類にも取り組んでいる。多くの場合で分類ができており、残りの場合についての研究を進めている。第4回宇都宮大学代数幾何学研究集会を世話人として主催した。若手の研究者を中心に20名近くが参加し、代数幾何学について議論を交わした。

  • Fano多様体を特徴づける対数的シンプレクティック構造の構成

    2021年  

     概要を見る

    The original plan was to study Poisson structures that characterize quadratic hypersurfaces. However, my interest shifted to the construction of SNC log-symplectic structures using the Hilbert scheme of points, which I was studying in parallel, and I spent most of this year working on this topic. It is a kind of Poisson structure known as the closest one to symplectic and it characterize projectice space. It is also difficult to construct examples like the symplectic case. We find that the blow-up of the Hilbert scheme of points of the diagonal Poisson structure on the projective space form an example of SNC log-symplectic. We also started a study on a VNC log-symplectic structure, which is a generalization of SNC that allows actions of finite groups.