2024/12/22 更新

写真a

ハヤシ ヒロキ
林 宏樹
所属
理工学術院 先進理工学部
職名
講師(任期付)
学位
博士(工学) ( 2021年03月 早稲田大学 )

経歴

  • 2023年04月
    -
    継続中

    早稲田大学   理工学術院 先進理工学部 応用化学科   講師(任期付)

  • 2021年04月
    -
    2023年03月

    早稲田大学   理工学術院 先進理工学部 応用化学科   助教

学歴

  • 2018年04月
    -
    2021年03月

    早稲田大学   大学院先進理工学研究科   ナノ理工学専攻  

所属学協会

  • 2020年02月
    -
    継続中

    化学センサ研究会

  • 2018年08月
    -
    継続中

    電気化学会

研究分野

  • エネルギー化学 / ナノバイオサイエンス

受賞

  • 水野賞

    2021年03月   早稲田大学   生体分子間相互作用に基づく分子認識界面により機能化した電界効果トランジスタバイオセンサ  

  • 優秀賞および異分野賞

    2019年09月   第2回COI学会   簡便なストレスマーカー検出のための半導体センサ界面の構築とバイオセンシングシステム  

  • 優秀ポスター賞

    2018年10月   第18回Conference for BioSignal and Medicine (CBSM)   インフルエンザウイルスの宿主域識別に向けた糖鎖固定化半導体センサの評価  

  • Best Presentation Award

    2018年06月   International Symposium on Biological Material Science for Agriculture and Engineering- Aiming at Future Interdisciplinary Collaborations   Discrimination of influenza virus subtypes in nasal mucus using glycan-immobilized field effect transistor biosensor  

 

論文

  • Field-effect transistor biosensor with signal amplification by ternary initiation complexes for detection of wide-range RNA concentration

    Hiroki Hayashi, Akihiro Enami, Hiroto Fujita, Shigeki Kuroiwa, Keishi Ohashi, Masayasu Kuwahara, Tetsuya Osaka, Toshiyuki Momma

    Talanta   273   125846  2024年06月  [査読有り]

    担当区分:筆頭著者, 責任著者

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Semiconductor-based biosensor exploiting competitive adsorption with charged pseudo-target molecules for monitoring 5-fluorouracil concentration in human serum

    Hiroki Hayashi, Mayuri Fujita, Shigeki Kuroiwa, Keishi Ohashi, Masahisa Okada, Futoshi Shibasaki, Tetsuya Osaka, Toshiyuki Momma

    Sensors and Actuators B: Chemical   395   134495 - 134495  2023年11月  [査読有り]

    担当区分:筆頭著者, 責任著者

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • A Non‐Destructive Electrical Assay of Stem Cell Differentiation Based on Semiconductor Biosensing

    Sho Hideshima, Hiroki Hayashi, Sayoko Saito, Hiroaki Tateno, Toshiyuki Momma, Tetsuya Osaka

    Analysis & Sensing   3 ( 2 ) e202200046  2022年10月  [査読有り]

    担当区分:筆頭著者

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Improvement in long-term stability of field effect transistor biosensor in aqueous environments using a combination of silane and reduced graphene oxide coating

    Sho Hideshima, Hiroki Hayashi, Ryo Takeuchi, Shofarul Wustoni, Shigeki Kuroiwa, Takuya Nakanishi, Toshiyuki Momma, Tetsuya Osaka

    Microelectronic Engineering   264   111859 - 111859  2022年08月  [査読有り]

    担当区分:筆頭著者

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Potassium-regulated Immobilization of Cortisol Aptamer for Field-effect Transistor Biosensor to Detect Changes in Charge Distribution with Aptamer Transformation

    S. Kuroiwa, H. Hayashi, R. Toyama, N. Kaneko, K. Horii, K. Ohashi, T. Momma, T. Osaka

    Chemistry Letters   50 ( 5 ) 892 - 895  2021年05月  [査読有り]

    担当区分:筆頭著者

     概要を見る

    Salivary cortisol concentration and its circadian variation were detected by optimizing the ionic concentration of a solution during the immobilization of aptamers on a field-effect transistor biosensor. This was achieved by modifying our previously developed technique of detecting uncharged cortisol using the transformation of negatively charged aptamers by controlling the aptamer spacing. This spacing control was achieved by synthesizing pseudo-cortisol-binding aptamers with a guanine-quadruplex during the immobilization of the aptamers in a highly concentrated solution of K+.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Immobilization of Target-Bound Aptamer on Field Effect Transistor Biosensor to Improve Sensitivity for Detection of Uncharged Cortisol

    Hiroki Hayashi, Ryo Toyama, Ryota Takibuchi, Sho Hideshima, Shigeki Kuroiwa, Naoto Kaneko, Katsunori Horii, Keishi Ohashi, Toshiyuki Momma, Tetsuya Osaka

    ELECTROCHEMISTRY   89 ( 2 ) 134 - 137  2021年  [査読有り]

    担当区分:筆頭著者

     概要を見る

    Field effect transistor (FET) biosensors are capable of detecting various biomolecules, although challenges remain in the detection of uncharged molecules. In this study, the detection of uncharged cortisol was demonstrated by interfacial design using a technique to immobilize target-bound aptamers. The target-bound aptamers, which formed a higher-order structure than target-unbound aptamers, expanded the distance between adjacent aptamers and reduced the steric hindrance to the conformational change. The density-controlled aptamers efficiently induced their conformational changes with the cortisol binding, which resulted in the improvement of the sensitivity of FET biosensors. (C) The Author(s) 2020. Published by ECSJ.

    DOI

    Scopus

    10
    被引用数
    (Scopus)
  • Tetrameric jacalin as a receptor for field effect transistor biosensor to detect secretory IgA in human sweat

    Hiroki Hayashi, Naoki Sakamoto, Sho Hideshima, Yoshitaka Harada, Mika Tsuna, Shigeki Kuroiwa, Keishi Ohashi, Toshiyuki Momma, Tetsuya Osaka

    Journal of Electroanalytical Chemistry   873   114371  2020年09月  [査読有り]

    担当区分:筆頭著者

     概要を見る

    Secretory immunoglobulin A (s-IgA), found in biological fluids, is useful for monitoring condition on mental health to prevent depression. In this study, the non-invasive detection of s-IgA in human sweat was demonstrated using field effect transistor (FFT) bioscnsors modified with a plant lectin, jacalin, as a receptor. The s-IgA molecules were detected with greater sensitivity using the jacalin-immobilized FET biosensors as compared to the sensitivity shown by Fabimmobilized FET bioscnsors. Jacalin, which is a small lectin tetramcr, has four glycan-binding sites and can capture a large number of s-IgA molecules within the charge-detectable region in terms of Dcbye length. Moreover, the jacalin-immobilized FET bioscnsor could detect s-IgA at concentrations ranging from 0.1 mu g/ml. to 100 mu g/mL Additionally, by using a filtration process to eliminate the interference of other components found in human sweat, our FET sensing system could specifically and quantitatively detect s-IgA. Therefore, our results show the utility of this device in monitoring mental stress.

    DOI

    Scopus

    12
    被引用数
    (Scopus)
  • Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles

    Sho Hideshima, Hiroki Hayashi, Hiroshi Hinou, Shunsuke Nambuya, Shigeki Kuroiwa, Takuya Nakanishi, Toshiyuki Momma, Shin-Ichiro Nishimura, Yoshihiro Sakoda, Tetsuya Osaka

    Scientific Reports   9   11616  2019年08月  [査読有り]

     概要を見る

    Pandemic influenza, triggered by the mutation of a highly pathogenic avian influenza virus (IFV), has caused considerable damage to public health. In order to identify such pandemic IFVs, antibodies that specifically recognize viral surface proteins have been widely used. However, since the analysis of a newly discovered virus is time consuming, this delays the availability of suitable detection antibodies, making this approach unsuitable for the early identification of pandemic IFVs. Here we propose a label-free semiconductor-based biosensor functionalized with sialic-acid-containing glycans for the rapid identification of the pandemic IFVs present in biological fluids. Specific glycans are able to recognize wild-type human and avian IFVs, suggesting that they are useful in discovering pandemic IFVs at the early stages of an outbreak. We successfully demonstrated that a dual-channel integrated FET biosensing system, which were modified with 6'-sialyllactose and 3'-sialyllactose for each gate area, can directly and specifically detect human H1N1 and avian H5N1 IFV particles, respectively, present in nasal mucus. Furthermore, to examine the possibility of identifying pandemic IFVs, the signal attributed to the detection of Newcastle disease virus (NDV) particles, which was selected as a prime model of a pandemic IFV, was clearly observed from both sensing gates. Our findings suggest that the proposed glycan-immobilized sensing system could be useful in identifying new pandemic IFVs at the source of an outbreak.

    DOI

    Scopus

    34
    被引用数
    (Scopus)
  • Effect of human serum on the electrical detection of amyloid-β fibrils in biological environments using azo-dye immobilized field effect transistor (FET) biosensor

    S. Hideshima, S. Wustoni, M. Kobayashi, H. Hayashi, S. Kuroiwa, T. Nakanishi, T. Osaka

    Sensing and Bio-Sensing Research   17   25 - 29  2018年02月  [査読有り]

    DOI

    Scopus

    16
    被引用数
    (Scopus)

▼全件表示

講演・口頭発表等

  • Charge-Discharge Behavior of NMC111 Cathode in Aqueous Zinc Battery

    T. Kousaki, H. Hayashi, H. Nara, G. Asano, T. Momma

    Pacific Rim Meeting on Electrochemical and Solid State Science 2024 (PRiME 2024)  

    発表年月: 2024年10月

    開催年月:
    2024年10月
     
     
  • Aptamer Immobilization on Transistor-Based Biosensor Via Crosslinker for Amine-to-Thiol Conjugation Toward Cortisol Detection

    H. Hayashi, A. Ishikawa, T. Momma, J. Uchida

    Pacific Rim Meeting on Electrochemical and Solid State Science 2024 (PRiME 2024)  

    発表年月: 2024年10月

    開催年月:
    2024年10月
     
     
  • Comparison of Electrochemical Measurement Methods for Amperometric Sensor to Detect RNA with Isothermal Nucleic Acid Amplification

    H. Saze, H. Hayashi, Y. Kataoka, M. Kuwahara, T. Momma

    Pacific Rim Meeting on Electrochemical and Solid State Science 2024 (PRiME 2024)  

    発表年月: 2024年10月

    開催年月:
    2024年10月
     
     
  • Field-Effect Transistor Biosensor By Capture of Nucleic Acid Strands with Isothermal Amplification for RNA Detection

    Y. Sato, H. Hayashi, Y. Kataoka, M. Kuwahara, T. Momma

    Pacific Rim Meeting on Electrochemical and Solid State Science 2024 (PRiME 2024)  

    発表年月: 2024年10月

    開催年月:
    2024年10月
     
     
  • Interfacial Design of Semiconductor-based Biosensor for Biomarker Detection

    Hiroki Hayashi  [招待有り]

    13th Jilin-Korea-Waseda Alliance Annual Symposium  

    発表年月: 2024年08月

  • バイオマーカー検出に向けた半導体型バイオセンサの界面設計と開発

    林宏樹

    東京バイオマーカー・イノベーション技術研究組合(TOBIRA) 第12回研究交流フォーラム  

    発表年月: 2024年07月

  • 亜鉛二次電池用正極への適用に向けた NMC111の脱リチウム処理の挙動

    林宏樹, 甲崎孝裕, 奈良洋希, 浅野剛太, 門間聰之

    電気化学会 第91回大会  

    発表年月: 2024年03月

    開催年月:
    2024年03月
     
     
  • 競合法を利用した電界効果トランジスタバイオセンサによる5-フルオロウラシルの検出

    藤田真佑里, 林 宏樹, 石川朱音, 黒岩繁樹, 大橋啓之, 岡田政久, 芝崎 太, 逢坂哲彌, 門間聰之

    2023電気化学秋季大会(第73回化学センサ研究発表会)  

    発表年月: 2023年09月

    開催年月:
    2023年09月
     
     
  • 等温核酸増幅法を適用したアンペロメトリック センサによるRNAの検出

    佐瀬 弘, 林 宏樹, 藤田 博仁, 片岡 由佳, 桒原 正靖, 門間 聰之

    2023電気化学秋季大会(第73回化学センサ研究発表会)  

    発表年月: 2023年09月

    開催年月:
    2023年09月
     
     
  • Highly sensitive RNA detection using field effect transistor biosensor with isothermal nucleic acid amplification

    Hiroki Hayashi, Akihiro Enami, Hiroto Fujita, Shigeki Kuroiwa, Keishi Ohashi, Masayasu Kuwahara, Toshiyuki Momma, Tetsuya Osaka

    33rd Anniversary World Congress on Biosensors 2023  

    発表年月: 2023年06月

    開催年月:
    2023年06月
     
     
  • iPS細胞の分化状態把握に向けたFETバイオセンサによる未分化マーカーの検出

    秀島 翔, 林 宏樹, 舘野 浩章, 門間 聰之, 逢坂 哲彌

    電気化学会第90回大会(第72回化学センサ研究発表会)  

    発表年月: 2023年03月

    開催年月:
    2023年03月
     
     
  • Design of semiconductor-based biosensing system for uncharged molecule detection

    Hiroki Hayashi  [招待有り]

    8th DGIST-Waseda Workshop on Electrochemistry 2022  

    発表年月: 2022年11月

  • 水系亜鉛負極電池用正極への三元系層状化合物の適用

    林宏樹, 浅野剛太, 三栗谷仁, 門間聰之, 逢坂哲彌

    第63回電池討論会  

    発表年月: 2022年11月

    開催年月:
    2022年11月
     
     
  • RNAの高感度検出に向けた半導体バイオセンサへの等温核酸増幅法の適用

    江南陽裕, 林宏樹, 藤田博仁, 黒岩繁樹, 大橋啓之, 桒原正靖, 門間聰之, 逢坂哲彌

    2022年秋季電気化学大会(第71回化学センサ研究発表会)  

    発表年月: 2022年09月

    開催年月:
    2022年09月
     
     
  • 電界効果トランジスタバイオセンサを用いた抗がん剤5-フルオロウラシルの検出

    林宏樹, 黒岩繁樹, 大橋啓之, 門間聰之, 逢坂哲彌, 岡田政久, 芝崎太

    東京バイオマーカー・イノベーション技術研究組合(TOBIRA) 第10回研究交流フォーラム  

    発表年月: 2022年06月

  • 人と動物の唾液ストレスセンサ

    大橋啓之, 黒岩繁樹, 林宏樹, 小坂田彩加, 門間聰之, 逢坂哲彌

    東京バイオマーカー・イノベーション技術研究組合(TOBIRA) 第10回研究交流フォーラム  

    発表年月: 2022年06月

  • 疑似抗原との競合を利用した半導体型バイオセンサによる血清中5-フルオロウラシルの検出

    林宏樹, 藤田真佑里, 黒岩繁樹, 大橋啓之, 門間聰之, 岡田政久, 芝崎太, 逢坂哲彌

    電気化学会第89回大会(第70回化学センサ研究発表会)  

    発表年月: 2022年03月

    開催年月:
    2022年03月
     
     
  • 受容体分子の変形に伴う電荷分布の変化を利用したコルチゾールアプタマー固定化電界効果トランジスタバイオセンサ

    黒岩繁樹, 林宏樹, 遠山良, 大橋啓之, 門間聰之, 逢坂哲彌

    電気化学会第88回大会(第68回化学センサ研究発表会)  

    発表年月: 2021年03月

    開催年月:
    2021年03月
     
     
  • Detection of Uncharged 5-Fluorouracil Exploiting Sequential Adsorption of 5-Fluorouracil-Modified Bovine Serum Albumin Using Field Effect Transistor Biosensor

    M. Fujita, H. Hayashi, S. Kuroiwa, K. Ohashi, T. Momma, T. Osaka, M. Okada, F. Shibasaki

    Pacific Rim Meeting on Electrochemical and Solid State Science 2020 (PRiME 2020)  

    発表年月: 2020年10月

  • Saliva Stress Marker Monitor Using Aptamer Immobilized FET Biosensor

    K. Ohashi, S. Kuroiwa, R. Toyama, H. Hayashi, T. Momma, T. Osaka

    Pacific Rim Meeting on Electrochemical and Solid State Science 2020 (PRiME 2020)  

    発表年月: 2020年10月

  • Detection of Stress-Related Secretory IgA in Human Sweat Using Lectin-Immobilized Field Effect Transistor Biosensor

    H. Hayashi, N. Sakamoto, S. Hideshima, Y. Harada, M. Tsuna, S. Kuroiwa, K. Ohashi, T. Momma, T. Osaka

    Pacific Rim Meeting on Electrochemical and Solid State Science 2020 (PRiME 2020)  

    発表年月: 2020年10月

  • 非侵襲なストレスセンサに向けた半導体バイオセンサの作製

    黒岩繁樹, 林宏樹, 坂本尚輝, 原田義孝, 綱美香, 大橋啓之, 門間聰之

    第3回COI学術交流会  

    発表年月: 2020年07月

  • FETバイオセンサによる非荷電分子検出の感度向上を目的としたターゲット-アプタマー複合体を用いた認識界面の構築

    遠山良, 黒岩繁樹, 林宏樹, 大橋 啓之, 門間聰之, 逢坂哲彌

    2019年電気化学秋季大会(第66回化学センサ研究発表会)   (山梨) 

    発表年月: 2019年09月

  • 簡便なストレスマーカー検出のための半導体センサ界面の構築とバイオセンシングシステム

    林宏樹

    第2回COI学会   (東京) 

    発表年月: 2019年09月

  • Functionalization of Semiconductor-Based Biosensor by Glycan toward the Detection of Influenza Virus

    H. Hayashi

    NIMS-Waseda Joint Symposium   (東京) 

    発表年月: 2019年07月

  • Semiconductor-Based Portable Biosensor for Food Allergen Detection

    S. Hideshima, S. Kuroiwa, H. Hayashi, Y. Harada, M. Tsuna, T. Momma, T. Osaka

    The IEEE International Symposium on Circuits and Systems 2019 (ISCAS2019)   (北海道) 

    発表年月: 2019年06月

  • ストレスマーカーの低侵襲測定に向けたアプタマー固定化電界効果トランジスタセンサの作製

    遠山良, 林宏樹, 黒岩繁樹, 秀島翔, 大橋啓之, 門間聰之, 逢坂哲彌

    東京バイオマーカー・イノベーション技術研究組合(TOBIRA) 第8回研究交流フォーラム   (東京) 

    発表年月: 2019年05月

  • 小型受容体ジャカリンを用いた電界効果トランジスタバイオセンサによる分泌型IgAの検出

    坂本尚輝, 林宏樹, 佐藤慎, 秀島翔, 原田義孝, 綱美香, 黒岩繁樹, 門間聰之, 逢坂哲彌

    電気化学会第86回大会(第65回化学センサ研究発表会)   (京都) 

    発表年月: 2019年03月

  • Discrimination of Influenza virus subtypes in mucus samples using glycan-immobilized semiconductor-based biosensor

    H. Hayashi, T. Momma, T. Osaka

    6th DGIST-Waseda Workshop on Electrochemistry 2018   (大邱) 

    発表年月: 2018年11月

  • インフルエンザウイルスの宿主域識別に向けた糖鎖固定化半導体センサの評価

    林宏樹, 秀島翔, 比能洋, 西村紳一郎, 迫田義博, 黒岩繁樹, 門間聰之, 逢坂哲彌

    第18回Conference for BioSignal and Medicine (CBSM)   (神奈川) 

    発表年月: 2018年10月

  • コンゴーレッド固定化FETバイオセンサを用いたヒト血清中アミロイドβ凝集体の検出

    黒岩繁樹, 林宏樹, 秀島翔, 門間聰之, 逢坂哲彌

    2018年電気化学秋季大会(第64回化学センサ研究発表会)   (石川) 

    発表年月: 2018年09月

  • Detection of Whole Influenza Viral Particle in High Ionic Strength Solution by using Glycan-Immobilized Field Effect Transistor Biosensor

    S. Hideshima, H. Hayashi, S. Kuroiwa, T. Osaka

    The 12th International Symposium on Electrochemical Micro & Nano System Technologies (EMNT2018)   (ミラノ) 

    発表年月: 2018年09月

  • Detection of Influenza virus in nasal mucus by viscosity reduction using glycan-immoobilized FET biosensor

    H. Hayashi, S. Hideshima, H. Hinou, SI. Nishimura, Y. Sakoda, S. Kuroiwa, T. Nakanishi, T. Momma, T. Osaka

    28th Anniversary World Congress on Biosensors 2018   (フロリダ) 

    発表年月: 2018年06月

  • Discrimination of influenza virus subtypes in nasal mucus using glycan-immobilized field effect transistor biosensor

    H. Hayashi, S. Hideshima, S. Kuroiwa, T. Momma, T. Osaka

    International Symposium on Biological Material Science for Agriculture and Engineering- Aiming at Future Interdisciplinary Collaborations   (東京) 

    発表年月: 2018年06月

  • 電界効果トランジスタバイオセンサを用いたアミロイドβ凝集体の検出

    林宏樹, 秀島翔, 黒岩繁樹, 大橋啓之, 門間聰之, 逢坂哲彌

    東京バイオマーカー・イノベーション技術研究組合(TOBIRA) 第7回研究交流フォーラム   (東京) 

    発表年月: 2018年05月

  • Development of glycan-immobilized FET biosensor toward the detection of Influenza virus from biological sample

    H. Hayashi, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Momma, T. Osaka

    5th DGIST-Waseda Workshop on Electrochemistry 2017   (東京) 

    発表年月: 2017年12月

  • 糖鎖固定化電界効果トランジスタバイオセンサによるインフルエンザウイルス粒子の高感度検出

    林宏樹, 秀島翔, 比能洋, 西村紳一郎, 迫田義博, 黒岩繁樹, 中西卓也, 門間聰之, 逢坂哲彌

    Conference for BioSignal and Medicine (CBSM) 第16回大会   (大分) 

    発表年月: 2016年09月

▼全件表示

共同研究・競争的資金等の研究課題

  • 核酸増幅反応産物を介した汎用的な RNA 検出半導体バイオセンサの創製

    精密測定技術振興財団  精密測定技術振興のための調査・研究事業

    研究期間:

    2024年01月
    -
    2025年03月
     

  • 核酸増幅反応を促進する界面を具備したRNA検出電気化学センサ

    日本学術振興会  科学研究費助成事業 若手研究

    研究期間:

    2023年04月
    -
    2025年03月
     

    林 宏樹

  • 核酸増幅反応を適用したRNA検出インピーダンスバイオセンサの開発

    公益財団法人里見奨学会  令和5年度 里見賞 研究提案表彰

    研究期間:

    2023年10月
    -
    2024年04月
     

  • 高い分子認識能を実現する核酸受容体の高配向固定化半導体センサ界面の設計

    公益財団法人里見奨学会  令和4年度 里見賞 研究提案表彰

    研究期間:

    2022年10月
    -
    2023年03月
     

  • 核酸増幅法による人工酵素DNAの多数形成を利用したRNA検出用電気化学バイオセンサの開発

    公益財団法人みずほ学術振興財団  第65回工学研究助成

    研究期間:

    2022年04月
    -
    2023年03月
     

  • コルチゾール検出に向けた人工酵素DNAアプタマーを利用した電気化学バイオセンサの開発

    公益財団法人里見奨学会  令和3年度 里見賞 研究提案表彰

    研究期間:

    2021年10月
    -
    2022年03月
     

  • 病原性ウイルスによる感冒の早期診断に向けた通信デバイスの開発に関する調査研究

    国立研究開発法人 科学技術振興機構  COI プログラム「COI 若手連携研究ファンド デジタル分野・FS」

    研究期間:

    2018年11月
    -
    2019年03月
     

▼全件表示

Misc

  • 競合法を利用した電界効果トランジスタバイオセンサによる5-フルオロウラシルの検出

    藤田真佑里, 林宏樹, 石川朱音, 黒岩繁樹, 大橋啓之, 岡田政久, 芝崎太, 逢坂哲彌, 門間聰之

    Proceedings of the 73rd Chemical Sensor Symposium   39 ( Supplement B ) 85 - 87  2023年09月

  • 等温核酸増幅法を適用したアンペロメトリックセンサによるRNAの検出

    佐瀬弘, 林宏樹, 藤田博仁, 片岡由佳, 桒原正靖, 門間聰之

    Proceedings of the 73rd Chemical Sensor Symposium   39 ( Supplement B ) 67 - 69  2023年09月

  • iPS細胞の分化状態把握に向けたFETバイオセンサによる未分化マーカーの検出

    秀島 翔, 林 宏樹, 舘野浩章, 門間聰之, 逢坂哲彌

    Proceedings of the 72nd Chemical Sensor Symposium   39 ( Supplement A ) 58 - 60  2023年03月

  • RNAの高感度検出に向けた半導体バイオセンサへの等温核酸増幅法の適用

    江南陽裕, 林宏樹, 藤田博仁, 黒岩繁樹, 大橋啓之, 桒原正靖, 門間聰之, 逢坂哲彌

    Proceedings of the 71st Chemical Sensor Symposium   38 ( Supplement B ) 25 - 27  2022年09月

  • 疑似抗原との競合を利用した半導体型バイオセンサによる血清中5-フルオロウラシルの検出

    林宏樹, 藤田真佑里, 黒岩繁樹, 大橋啓之, 門間聰之, 岡田政久, 芝崎太, 逢坂哲彌

    Proceedings of the 70th Chemical Sensor Symposium   38 ( Supplement A ) 82 - 84  2022年03月

  • 受容体分子の変形に伴う電荷分布の変化を利用したコルチゾールアプタマー固定化電界効果トランジスタバイオセンサ

    黒岩繁樹, 林宏樹, 遠山良, 大橋啓之, 門間聰之, 門間聰之, 逢坂哲彌, 逢坂哲彌

    Proceedings of the 68th Chemical Sensor Symposium   37 ( Supplement A ) 10 - 12  2021年03月

    J-GLOBAL

  • Saliva Stress Marker Monitor Using Aptamer Immobilized FET Biosensor

    Keishi Ohashi, Shigeki Kuroiwa, Ryo Toyama, Hiroki Hayashi, Toshiyuki Momma, Tetsuya Osaka

    ECS Meeting Abstracts   MA2020-02 ( 66 ) 3390 - 3390  2020年11月

     概要を見る

    Introduction

    People have felt that their mind controls the body. Advances in immunology and neuroscience are scientifically elucidating this experience. For example, it has been clarified that the mechanism by which changes in the activity of the central nervous system due to stress regulate the immune response through sympathetic nerves. If these latest medical knowledge and electronic advances can be used to provide a simple monitoring system for stress-related substances, it is hoped that it will help prevent mental and physical diseases. Nevertheless, performing a blood draw to detect the stress hormones cortisol and catecholamine has the challenge that the act of drawing blood itself causes stress. Instead, cortisol concentration measurement from saliva has been developed as a non-invasive detection, but catecholamines cannot be detected from saliva. Salivary cortisol concentration measurements have been developed as an alternative non-invasive detection method, but catecholamines are unable to obtain the necessary information from saliva. Salivary α-amylase and chromogranin A (CgA) have also been studied and used in part as alternatives to catecholamines. Secretary immunoglobulin A (s-IgA) in saliva is also a good stress marker that reflects suppression of the immune system by stress. Simultaneous monitoring of the time-dependence of these stress markers of different origins is expected to help elucidate the complex mental stress mechanisms [1].

    Sensor module platform

    Accurate and inexpensive biomaterial detectors are required for IoT biosensing systems and monitoring over time has not been realized until now. Field-effect transistor (FET) biosensors are small devices that detect various types of biomarkers at low power consumption without disturbing the system under test [2]. The biggest challenge of FET biosensors when used in electronics systems is instability due to current drift. We have succeeded in developing a method that minimizes drift using only the normal silicon fab process. This manufacturing process does not use tantalum pentoxide or other special materials.

    Figure 1 shows a picture of a newly developed four element FET sensor chip with extremely low instability. The electronics part of the developed biosensor module consists of this chip and a Bluetooth Low Energy (BLE)-type communication circuit. We selected four types of aptamers as sensor receptors on the gate insulator on the chip [3]. The aptamers can be stored and used at room temperature for a long period of time. They also have the advantages of being reversible to thermal denaturation and can be produced inexpensively and industrially. Finally, as a technique for producing biosensors with less variation, such as commercial physical sensors, we developed a tool for uniformly immobilizing the receptor monolayer in a narrow range of fixed positions on the chip.

    Simultaneous detection of multiple stress markers in saliva

    When n types of receptors are immobilized on n FET elements, n-1 types of independent signals can be extracted. The effects of non-specifically adsorbed substances and pH in saliva, temperature fluctuation, optical noise, and crosstalk between elements can be eliminated from the original signals of multiple FET elements. Using this technique, we succeeded in obtaining multiple stress marker concentrations such as cortisol, a-amylase, s-IgA, and CgA [4], at the same time just by dropping saliva on the sensor. The signal time constant is less than 1 minute, which indicates that a continuous monitor is realized substantially.

    Operability equivalent to physical sensor

    Internet of Things (IoT) systems require many low-cost sensors. FET sensor chips manufactured using only the conventional silicon fab process can achieve a low cost of about $1 per chip. However, even with such cheap biosensors, if they are disposable, the cost burden on the user will increase significantly in the long run. As a result, it becomes difficult to secure good customers as fixed users. In addition, disposable chips are not suitable for continuous monitoring required for medically important data. We are developing biosensors that are as easy to operate as conventional physical sensors by introducing reusable cleaning methods and recycled precision cleaning methods.

    References

    [1] L. Steinman, Annu. Rev. Immunol., 32, 257-281, (2014).

    [2] K. Ohashi, T. Osaka, ECS Transactions, 75, 39, 1-9, (2017).

    [3] N Kaneko, H Minagawa, J Akitomi, K Ohashi, S Kuroiwa, S Wustoni, S Hideshima, T Osaka, K Horii, I Waga, The 43rd International Symposium on Nucleic Acids Chemistry, 2P-55, (2016).

    [4] S. Kuroiwa, R. Takibuchi, A. Matsuzaka, S. Hideshima, N. Kaneko, H. Minagawa, K. Horii, I. Waga, T. Nakanishi, K. Ohashi, T. Momma, T. Osaka, 232nd ECS Meeting, 2115, (2017).



    Figure 1

    <p></p>

    DOI

  • Detection of Uncharged 5-Fluorouracil Exploiting Sequential Adsorption of 5-Fluorouracil-Modified Bovine Serum Albumin Using Field Effect Transistor Biosensor

    Mayuri Fujita, Hiroki Hayashi, Shigeki Kuroiwa, Keishi Ohashi, Toshiyuki Momma, Tetsuya Osaka, Masahisa Okada, Futoshi Shibasaki

    ECS Meeting Abstracts   MA2020-02 ( 66 ) 3361 - 3361  2020年11月

     概要を見る

    The dosage of 5-fluorouracil (5-FU), which is a widely used for cancer medication, is determined based on body surface area, although efficacy largely depends on the liver function of the individual, resulting that only 21% patients are given an optimal dose of 5-FU in these years. The measurement of the 5-FU concentration in the blood enables us to adjust individual dose adjustment. Conventional methods for 5-FU detection such as an enzyme-linked immunosorbent assay (ELISA) and liquid chromatography are not very suitable for clinical applications because they need time-consuming procedure with expensive equipments. Detection of 5-FU using a field effect transistor (FET) biosensor, which enables rapid and simple measurement, is expected to solve such problems. However, FET biosensor, which detects changes in its surface density due to the adsorption of charged molecules, was unable to detect uncharged 5-FU. In this study, a method for the FET biosensing to detect 5-FU exploiting sequential adsorption of 5-FU modified bovine serum albumin (BSA/5-FU) was proposed. By using this method, FET responses caused by the adsorption of negatively charged BSA/5-FU depending on the 5-FU concentration were detected.

    The SiO2 surface of the FET gate insulator was exposed to O2 plasma to introduce hydroxyl groups. After the exposure, the surface was exposed to 3-aminopropyltriethoixysilane (APTES), followed by the modification of the cross-linker, glutaraldehyde (GA). A single chain variable fragments (ScFv) and antigen binding fragments (Fab) were allowed to react with each activated GA-modified FET. After the immobilization, the residual aldehyde-groups were treated by ethanolamine to suppress the non-specific adsorption. V g-I d characteristics were measured before and after dripping of both 5-FU and BSA/5-FU on the ScFv- and Fab-immobilized FET biosensors. Finally, threshold voltage shifts (∆V g) caused by the adsorption of BSA/5-FU were obtained.

    To compare the capture capability of ScFv and Fab, the electrical responses of the FET biosensors functionalized with the two receptors due to the adsorption of BSA/5-FU were measured. The responses of ScFv- and Fab-immobilized FET biosensor caused by dripping of 25 μg/mL BSA/5-FU were +25 mV and +40 mV, respectively. The difference between ΔV g values for these two FET sensors using ScFv or Fab can be ascribed to the difference of affinity [1]. To verify the specificity of Fab-immobilized FET biosensor, ∆V g was measured when human serum albumin (HSA) was dropped on the FET biosensor, and the ∆V g was hardly observed. Additionally, the atomic force microscopic (AFM) images on the FET gate surface shows that the size of observed particles matches the size of BSA/5-FU, while the surface morphology and roughness are not significantly changed. These results indicated that Fab-immobilized surface specifically captured BSA/5-FU. To investigate the quantitative detectability of the Fab-immobilized FET biosensor, we measured the FET responses corresponding to the amount of adsorbed BSA/5-FU, which was related with the concentrations of 5-FU. As a result, the magnitude of ∆V g by dripping of 1000 ng/mL 5-FU and 25 μg/mL BSA/5-FU was reduced to +12 mV compared with the response of 25 µg/mL BSA/5-FU (Figure 1). These results can be attributed to that the adsorbed 5-FU inhibited the adsorption of BSA/5-FU to the Fab-immobilized surface. Therefore, we conclude that the detection of 5-FU using the FET biosensors by applying the charged BSA/5-FU is a promising simple method for monitoring the concentration of 5-FU.

    Reference:

    [1] Y. Reiter, et al., J. Biol. Chem., 269, 28, 18327-18331 (1994).

    Figure 1 V g-I d characteristics of Fab-immobilized FET biosensor before and after dripping of (a) 0 ng/mL 5-FU and 25 µg/mL BSA/5-FU or (b) 1000 ng/mL 5-FU and 25 µg/mL BSA/5-FU.



    Figure 1

    <p></p>

    DOI

  • Detection of Stress-Related Secretory IgA in Human Sweat Using Lectin-Immobilized Field Effect Transistor Biosensor

    Hiroki Hayashi, Naoki Sakamoto, Sho Hideshima, Yoshitaka Harada, Mika Tsuna, Shigeki Kuroiwa, Keishi Ohashi, Toshiyuki Momma, Tetsuya Osaka

    ECS Meeting Abstracts   MA2020-02 ( 66 ) 3391 - 3391  2020年11月

     概要を見る

    A field effect transistor (FET) biosensor is a promising device for various applications such as medical diagnosis and environmental monitoring. Because characteristics of FET biosensors are directly influenced by the change of gate-insulator surface potential induced by the adsorption of charged molecules, FET biosensors could provide the rapid and label-free biomolecular detection. Recently, mental stress-related diseases, such as integration disorder syndrome and depression, affect people's health, resulting that simple stress monitoring is expected for early stage detection of the disease. Previously, the relation between concentration of stress markers and mental stress has been reported [1], and the monitoring of circadian concentration of the markers is found to be important for prediction of the stress condition. Especially, secretory immunoglobulin A (s-IgA), which is an immunity-related molecule present in the human mucus, is one of the candidates to be monitored as a stress marker. However, conventional methods for measuring concentration of s-IgA are restricted in daily use due to complex protocol, time-consuming and expensive equipment.

    Nowadays, we have investigated sensitive detection method for various targets by using the FET biosensor [2,3]. To achieve improvement of the sensitivity, small receptors have been applied to increase electrical responses owing to the effective use of a charge-recognition region from FET gate surface, Debye length [4,5]. In this study, we selected a small plant lectin, jacalin (66 kDa), which specifically binds glycan of hinge region of IgA, as a receptor. Additionally, jacalin was inexpensive compared with antibody due to the purification from jackfruits seeds. From these points, jacalin-immobilized FET biosensor was worth to be investigated to realize a simple, sensitive and low-cost stress monitoring device for stress marker. Thus, we investigated the usefulness of the jacalin as a FET receptor.

    The SiO2 gate insulator of the FET was exposed to O2 plasma (200 W for 1 min) for introduction of hydroxyl groups reacting with triethoxysilane groups of self-assembled monolayer (SAM). Then, the FET chip was immersed in toluene solvent including 1%(v/w) 3-aminopropyltriethoxysilane in an argon atmosphere (60ºC for 7 min.). Following by the cross-linking by glutaraldehyde, jacalin was immobilized on FET gate surfaces. Finally, ethanolamine capping was performed to prevent the non-specific adsorption of contaminating molecules in analyzed samples, resulting in the fabrication of the jacalin-immobilized FET biosensor. The FET characteristics were measured by sweeping the gate-voltage (V g) from -2.0 V to 0 V with 0.1 V drain voltage (V d) in 0.01 × phosphate buffered saline (pH 7.4). Then, the electrical responses (ΔV g) were analyzed from the FET characteristics before and after the addition of analyte to gate surface.

    To evaluate the specificity of jacalin-immobilized FET biosensor, ΔV g caused by the addition of s-IgA and human serum albumin (HSA) were measured. The FET charactristics was shifted in a positive direction (+53 mV) due to the adsorption of negative-charged s-IgA (Figure 1a), while the responses related with HSA addition were scarcely observed. Thus, specific capture of the s-IgA molecules by the jacalin-immobilized surface was indicated. Moreover, to evaluate the advantage of jacalin, we compared ΔV g with FET functionalized by antigen binding fragment (Fab), which was obtained by cleaving the anti-s-IgA antibody. An electrical response of Fab-immobilized FET was +24 mV (Figure 1b). The change in ΔV g values for these two FET sensors using jacalin or Fab could be discussed as follows. Jacalin could capture more s-IgA molecules within Debye length from the gate surface of FET. In addition, the jacalin-immobilized FET responded linearly to s-IgA in a concentration range from 0.1 μg/mL to 100 μg/mL. Finally, sweat samples collected from healthy persons were examined with the developed jacalin-immobilized FET biosensor, and clear responses were obtained. From these results, jacalin was found to be useful as a receptor for FET biosensors to achieve a sensitive, simple and non-invasive detection of s-IgA.

    [1] K. Obayashi, Clin. Chim. Acta, 425, 196-201 (2013).

    [2] S. Hideshima, M. Kobayashi, T. Wada, S. Kuroiwa, T. Nakanishi, N. Sawamura, T. Asahi, T. Osaka, Chem. Commun., 50, 3476-3479 (2014).

    [3] S. Hideshima, K. Fujita, Y. Harada, M. Tsuna, Y. Seto, S. Sekiguchi, S. Kuroiwa, T. Nakanishi, T. Osaka, Sens. Bio-Sens. Res., 7, 90–94 (2016).

    [4] S. Cheng, K. Hotani, S. Hideshima, S. Kuroiwa, T. Nakanishi, M. Hashimoto, Y. Mori, T. Osaka, Materials, 7, (4), 2490-2500 (2014).

    [5] S. Hideshima, H. Hayashi, H. Hinou, S. Nambuya, S. Kuroiwa, T. Nakanishi, T. Momma, S.-I. Nishimura, Y. Sakoda, T. Osaka, Sci. Rep., 9, 11616 (2019).

    Figure 1 V g-I d characteristics of (a) jacalin or (b) Fab-immobilized FET biosensor before and after the addition of 100 μg/mL s-IgA.



    Figure 1

    <p></p>

    DOI

  • FETバイオセンサによる非荷電分子検出の感度向上を目的としたターゲット-アプタマー複合体を用いた認識界面の構築

    遠山 良, 黒岩 繁樹, 林 宏樹, 大橋 啓之, 門間 聰之, 逢坂 哲彌

    Proceedings of the 66th Chemical Sensor Symposium   66 ( Supplement B ) 97 - 99  2019年09月

    CiNii

  • 小型受容体ジャカリンを用いた電界効果トランジスタバイオセンサによる分泌型IgAの検出

    坂本尚輝, 林宏樹, 佐藤慎, 秀島翔, 原田義孝, 綱美香, 黒岩繁樹, 門間聰之, 逢坂哲彌

    Proceedings of the 65th Chemical Sensor Symposium   35 ( Supplement A ) 28 - 30  2019年03月

    研究発表ペーパー・要旨(全国大会,その他学術会議)  

    J-GLOBAL

  • コンゴーレッド固定化FETバイオセンサを用いたヒト血清中アミロイドβ凝集体の検出

    黒岩繁樹, 林宏樹, 秀島翔, 門間聰之, 逢坂哲彌

    Proceedings of the 64th Chemical Sensor Symposium   34 ( Supplement B ) 22 - 24  2018年09月

▼全件表示

産業財産権

  • 非荷電分子の検出方法及びプローブ分子固定化半導体センシングデバイス

    門間聰之, 林宏樹, 内田淳一, 萬隆行

    特許権

  • 亜鉛2次電池の正極活物質、亜鉛2次電池、および、亜鉛2次電池の製造方法

    逢坂哲彌, 門間聰之, 三栗谷仁, 林宏樹, 浅野剛太

    特許権

  • 小型非荷電分子の検出方法

    逢坂哲彌, 門間聰之, 大橋啓之, 黒岩繁樹, 林宏樹, 芝崎太

    特許権

  • アプタマー固定化半導体センシングデバイス及び非荷電分子の検出方法

    特許第7276774号

    逢坂 哲彌, 大橋 啓之, 黒岩 繁樹, 林 宏樹

    特許権

  • レクチン固定化半導体センシングデバイス及び糖化合物の検出方法

    特許第7268411号

    逢坂哲彌, 門間聰之, 秀島翔, 林宏樹, 綱美香, 原田義孝

    特許権

  • アプタマー固定化半導体センシングデバイス及び非荷電分子の検出方法

    逢坂哲彌, 大橋啓之, 黒岩繁樹, 林宏樹

    特許権

▼全件表示

 

現在担当している科目

▼全件表示

担当経験のある科目(授業)

  • 応用化学総論

    早稲田大学  

    2023年04月
    -
    継続中
     

  • 応用化学基礎演習D

    早稲田大学  

    2023年04月
    -
    継続中
     

  • Introduction to Industrial Chemistry

    Waseda University  

    2023年04月
    -
    継続中
     

  • Fundamentals of Materials Chemistry

    Waseda University  

    2023年04月
    -
    継続中
     

  • 高度技術外部実習(初級) (エネルギーマテリアル)

    早稲田大学大学院  

    2023年04月
    -
    継続中
     

  • 高度技術外部実習(上級)(エネルギーマテリアル)

    早稲田大学大学院  

    2023年04月
    -
    継続中
     

  • 電力・エネルギーマテリアル現場演習

    早稲田大学大学院  

    2023年04月
    -
    継続中
     

  • マテリアルデザイン科学ジョイントセミナー

    早稲田大学大学院  

    2023年04月
    -
    継続中
     

  • ナノスケール科学ジョイントセミナー

    早稲田大学大学院  

    2023年04月
    -
    継続中
     

  • 理工学基礎実験1A

    早稲田大学  

    2023年04月
    -
    継続中
     

  • 応用化学基礎演習C

    早稲田大学  

    2021年04月
    -
    継続中
     

▼全件表示