Updated on 2022/05/25

写真a

 
MIEZAKI, Tsuyoshi
 
Affiliation
Faculty of Science and Engineering, School of Fundamental Science and Engineering
Job title
Professor

Concurrent Post

  • Faculty of Science and Engineering   Graduate School of Fundamental Science and Engineering

Research Institute

  • 2021
    -
    2022

    理工学術院総合研究所   兼任研究員

Education

  •  
    -
    2009.03

    Kyushu University   Graduate School, Division of Mathematical Sciences  

  •  
    -
    2006.03

    Kyushu University   Graduate School, Division of Mathematical Sciences  

  •  
    -
    2004.03

    Tokyo University of Science   Faculty of Science  

Degree

  • 2004.03   Tokyo University of Science   Bachelor of Science

  • 2006.03   Kyushu University   Master of Mathematical Sciences

  • 2009.03   Kyushu University   Ph.D. (Mathematical Sciences)

Research Experience

  • 2021.04
    -
    Now

    Waseda University

  • 2017.10
    -
    2021.03

    University of the Ryukyus   Faculty of Education

  • 2015.10
    -
    2017.09

    Yamagata University   Faculty of Education, Art and Science

  • 2012.10
    -
    2015.09

    Yamagata University   Faculty of Education, Art and Science

  • 2011.04
    -
    2012.09

    Oita National College of Technology   General Education

  • 2010.04
    -
    2011.03

    Tohoku University   Graduate School of Information Sciences

  • 2009.04
    -
    2010.03

    Hokkaido University   Faculty of Science

  • 2008.04
    -
    2009.03

    Kyushu University   Graduate School of Mathematics Department of Mathematics

▼display all

 

Research Areas

  • Applied mathematics and statistics   デザイン理論を用いた対称性の探求

  • Basic mathematics   デザイン理論を用いた対称性の探求

  • Algebra   符号,格子,頂点作用素代数の対称性

Research Interests

  • 代数的組合せ論

Papers

  • A note on the Assmus--Mattson theorem for some binary codes

    Tsuyoshi Miezaki, Hiroyuki Nakasora

    Designs, Codes and Cryptography    2022.04  [Refereed]

  • Variants of Jacobi polynomials in coding theory

    Himadri Shekhar Chakraborty, Tsuyoshi Miezaki

       2021  [Refereed]

    Authorship:Lead author

  • Average of complete joint weight enumerators and self-dual codes

    Himadri Shekhar Chakraborty, Tsuyoshi Miezaki

    Designs, Codes, and Cryptography   89 ( 6 ) 1241 - 1254  2021  [Refereed]

     View Summary

    In this paper, we give a representation of the average of complete joint weight enumerators of two linear codes of length n over F and Z in terms of the compositions of n and their distributions in the codes. We also obtain a generalization of the representation for the average of g-fold complete joint weight enumerators of codes over F and Z . Finally, the average of intersection numbers of a pair of Type III (resp. Type IV) codes, and its second moment are found. q k q k

    DOI

  • A note on Assmus-Mattson type theorems

    Tsuyoshi Miezaki, Akihiro Munemasa, Hiroyuki Nakasora

    Designs, Codes and Cryptography   89 ( 5 ) 843 - 858  2021  [Refereed]

    DOI

  • Design-theoretic analogies between codes, lattices, and vertex operator algebras

    Tsuyoshi Miezaki

    Designs, Codes and Cryptography   89 ( 5 ) 763 - 780  2021  [Refereed]

  • Tutte polynomial, complete invariant, and theta series

    Misaki Kume, Tsuyoshi Miezaki, Tadashi Sakuma, Hidehiro Shinohara

    Graphs and Combinatorics   37 ( 5 ) 1545 - 1558  2021  [Refereed]

    Authorship:Lead author

  • A construction of spherical 3-designs

    Tsuyoshi Miezaki

    Ukrainian Mathematical Journal    2021  [Refereed]

    Authorship:Lead author

  • On Eisenstein polynomials and zeta polynomials II

    Miezaki T

    International Journal of Number Theory   16 ( 1 ) 207 - 218  2020.02  [Refereed]

    Authorship:Lead author

    DOI

  • A generalization of the Tutte polynomials

    Miezaki T

    Proceedings of the Japan Academy Series A: Mathematical Sciences   95 ( 10 ) 111 - 113  2019.12  [Refereed]

    Authorship:Lead author

     View Summary

    In this paper, we introduce the concept of the Tutte polynomials of genus g and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus g are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus g are complete matroid invariants.

    DOI

  • The support designs of the triply even codes of length 48

    Tsuyoshi Miezaki, Hiroyuki Nakasora

    Journal of Combinatorial Designs   27 ( 11 ) 673 - 681  2019.11  [Refereed]

  • On Eisenstein polynomials and zeta polynomials

    Miezaki T

    Journal of Pure and Applied Algebra   223 ( 10 ) 4153 - 4160  2019.10  [Refereed]

    DOI

  • On the cycle index and the weight enumerator

    Tsuyoshi Miezaki, Manabu Oura

    Designs, Codes and Cryptography   87 ( 6 ) 1237 - 1242  2019.04  [Refereed]

    Authorship:Lead author

    DOI

  • New Invariants for Integral Lattices

    HAYASAKA Ryota, MIEZAKI Tsuyoshi, TOKI Masahiko

    Interdisciplinary Information Sciences   25 ( 1 ) 53 - 57  2019  [Refereed]

    Authorship:Lead author

     View Summary

    <p>Let Λ be any integral lattice in Euclidean space. It has been shown that for every integer n>0, there is a hypersphere that passes through exactly n points of Λ. Using this result, we introduce new lattice invariants and give some computational results related to two-dimensional Euclidean lattices of class number one.</p>

    DOI CiNii

  • An upper bound of the value of of the support -designs of extremal binary doubly even self-dual codes

    Tsuyoshi Miezaki, Hiroyuki Nakasora

    DESIGNS CODES AND CRYPTOGRAPHY   79 ( 1 ) 37 - 46  2016.04  [Refereed]

     View Summary

    Let be an extremal binary doubly even self-dual code of length and be the support design of for a weight . We introduce the two numbers and : is the largest integer such that, for all wight, is a -design; denotes the largest integer such that there exists a such that is a -design. In this paper, we consider the possible values of and .

    DOI

  • Congruences for the Fourier coefficients of the Mathieu mock theta function

    Tsuyoshi Miezaki, Matthias Waldherr

    JOURNAL OF NUMBER THEORY   148   451 - 462  2015.03  [Refereed]

     View Summary

    In this paper, we study the congruences for the Fourier coefficients of the Mathieu mock theta function, which appears in the Mathieu moonshine phenomenon discovered by Eguchi, Ooguri, and Tachikawa. (C) 2014 Elsevier Inc. All rights reserved.

    DOI

  • Erratum to On the support designs of extremal binary doubly even self-dual codes (Des. Codes Cryptogr., (2016), 10.1007/s10623-012-9782-3)

    Naoyuki Horiguchi, Tsuyoshi Miezaki, Hiroyuki Nakasora

    Designs, Codes, and Cryptography   73 ( 3 ) 1027 - 1028  2014.12  [Refereed]

    DOI

  • On the support designs of extremal binary doubly even self-dual codes

    Naoyuki Horiguchi, Tsuyoshi Miezaki, Hiroyuki Nakasora

    DESIGNS CODES AND CRYPTOGRAPHY   72 ( 3 ) 529 - 537  2014.09  [Refereed]

     View Summary

    Let D be the support design of the minimum weight of an extremal binary doubly even self-dual [24m, 12m, 4m + 4] code. In this note, we consider the case when D becomes a t-design with t &gt;= 6.

    DOI J-GLOBAL

  • The McKay-Thompson series of Mathieu Moonshine modulo two

    Thomas Creutzig, Gerald Hoehn, Tsuyoshi Miezaki

    RAMANUJAN JOURNAL   34 ( 3 ) 319 - 328  2014.08  [Refereed]

     View Summary

    In this note, we describe the parity of the coefficients of the McKay-Thompson series of Mathieu moonshine. As an application, we prove a conjecture of Cheng, Duncan, and Harvey stated in connection with umbral moonshine for the case of Mathieu moonshine.

    DOI J-GLOBAL

  • ON THE EXISTENCE OF EXTREMAL TYPE II Z(2k)-CODES

    Masaaki Harada, Tsuyoshi Miezaki

    MATHEMATICS OF COMPUTATION   83 ( 287 ) 1427 - 1446  2014.05  [Refereed]

     View Summary

    For lengths 8, 16, and 24, it is known that there is an extremal Type II Z(2k)-code for every positive integer k. In this paper, we show that there is an extremal Type II Z(2k)-code of lengths 32, 40, 48, 56, and 64 for every positive integer k. For length 72, it is also shown that there is an extremal Type II Z(4k)-code for every positive integer k with k &gt;= 2.

    DOI J-GLOBAL

  • On a generalization of spherical designs

    Tsuyoshi Miezaki

    DISCRETE MATHEMATICS   313 ( 4 ) 375 - 380  2013.02  [Refereed]

     View Summary

    In this paper, we define the concept of a spherical T-design for a finite subset of a sphere. Then, we give some examples of such designs using the Z(2)-lattice, which is related to Lehmer's conjecture. (C) 2012 Elsevier B.V. All rights reserved.

    DOI J-GLOBAL

  • Conformal designs and DH Lehmer's conjecture

    Tsuyoshi Miezaki

    JOURNAL OF ALGEBRA   374   59 - 65  2013.01  [Refereed]

     View Summary

    In 1947, Lehmer conjectured that the Ramanujan tau-function tau(m) is non-vanishing for all positive integers m, where tau(m) are the Fourier coefficients of the cusp form Delta of weight 12. It is known that Lehmer's conjecture can be reformulated in terms of spherical t-design, by the result of Venkov. In this paper, we show that tau(m) = 0 is equivalent to the fact that the homogeneous space of the moonshine vertex operator algebra (V-b)(m+1) is a conformal 12-design. Therefore, Lehmer's conjecture is now reformulated in terms of conformal t-designs. (c) 2012 Elsevier Inc. All rights reserved.

    DOI J-GLOBAL

  • Toy models for D.H. Lehmer's conjecture II

    Eiichi Bannai, Tsuyoshi Miezaki

    Quadratic and Higher Degree Forms (Developments in Mathematics)    2013  [Refereed]

  • Frames in the odd Leech lattice

    Tsuyoshi Miezaki

    JOURNAL OF NUMBER THEORY   132 ( 12 ) 2773 - 2778  2012.12  [Refereed]

     View Summary

    In this paper, we show that there is a frame of norm k in the odd Leech lattice for every k &gt;= 3. (C) 2012 Elsevier Inc. All rights reserved.

    DOI J-GLOBAL

  • On a property of 2-dimensional integral Euclidean lattices

    Eiichi Bannai, Tsuyoshi Miezaki

    JOURNAL OF NUMBER THEORY   132 ( 3 ) 371 - 378  2012.03  [Refereed]

     View Summary

    Let Lambda be any integral lattice in the 2-dimensional Euclidean space. Generalizing the earlier works of Hiroshi Maehara and others, we prove that for every integer n &gt; 0, there is a circle in the plane R-2 that passes through exactly n points of Lambda. (C) 2011 Elsevier Inc. All rights reserved.

    DOI J-GLOBAL

  • On the Mathieu mock theta function

    Tsuyoshi Miezaki

    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES   88 ( 2 ) 28 - 30  2012.02  [Refereed]

     View Summary

    In this paper, we study the congruences of the Fourier coefficients of the Mathieu mock theta function, which appears in the Mathieu moonshine phenomenon discovered by Eguchi, Ooguri, and Tachikawa.

    DOI J-GLOBAL

  • An elementary approach to toy models for D.H. Lehmer's conjecture

    Eiichi Bannai, Tsuyoshi Miezaki, Vladimir A. Yudin

    Izv. Ross. Akad. Nauk Ser. Mat.   75 ( 6 ) 3 - 16  2012  [Refereed]

  • On Euclidean designs and potential energy

    Tsuyoshi Miezaki, Makoto Tagami

    ELECTRONIC JOURNAL OF COMBINATORICS   19 ( 1 )  2012.01  [Refereed]

     View Summary

    We study Euclidean designs from the viewpoint of the potential energy. For a finite set in Euclidean space, we formulate a linear programming bound for the potential energy by applying harmonic analysis on a sphere. We also introduce the concept of strong Euclidean designs from the viewpoint of the linear programming bound, and we give a Fisher type inequality for strong Euclidean designs. A finite set on Euclidean space is called a Euclidean a-code if any distinct two points in the set are separated at least by a. As a corollary of the linear programming bound, we give a method to determine an upper bound on the cardinalities of Euclidean a-codes on concentric spheres of given radii. Similarly we also give a method to determine a lower bound on the cardinalities of Euclidean t-designs as an analogue of the linear programming bound.

  • An optimal odd unimodular lattice in dimension 72

    Masaaki Harada, Tsuyoshi Miezaki

    ARCHIV DER MATHEMATIK   97 ( 6 ) 529 - 533  2011.12  [Refereed]

     View Summary

    It is shown that if there is an extremal even unimodular lattice in dimension 72, then there is an optimal odd unimodular lattice in that dimension. Hence, the first example of an optimal odd unimodular lattice in dimension 72 is constructed from the extremal even unimodular lattice which has been recently found by G. Nebe.

    DOI J-GLOBAL

  • An elementary approach to toy models for D. H. Lehmer's conjecture

    E. Bannai, T. Miezaki, V. A. Yudin

    IZVESTIYA MATHEMATICS   75 ( 6 ) 1093 - 1106  2011  [Refereed]

     View Summary

    We use the theory of algebraic fields to establish that none of the shells of the lattice Z(2) (resp. A(2)) is a 4-design (resp. 6-design). We discuss the connection between spherical designs and imaginary quadratic fields.

    DOI

  • An upper bound on the minimum weight of Type II Z(2k)-codes

    Masaaki Harada, Tsuyoshi Miezaki

    JOURNAL OF COMBINATORIAL THEORY SERIES A   118 ( 1 ) 190 - 196  2011.01  [Refereed]

     View Summary

    In this paper we give a new upper bound on the minimum Euclidean weight of Type II Z(2k)-codes and the concept of extremality for the Euclidean weights when k = 3 4 5 6 Together with the known result we demonstrate that there is an extremal Type II Z(2k)-code of length 8m (m &lt;= 8) when k = 3,4,5 6 (C) 2010 Elsevier Inc All rights reserved

    DOI J-GLOBAL

  • Toy models for D. H. Lehmer's conjecture

    Eiichi Bannai, Tsuyoshi Miezaki

    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN   62 ( 3 ) 687 - 705  2010.07  [Refereed]

     View Summary

    In 1947, Lehmer conjectured that the Ramanujan tau-function tau(m) never vanishes for all positive integers m, where tau(m) are the Fourier coefficients of the cusp form Delta(24) of weight 12. Lehmer verified the conjecture in 1947 for m &lt; 214928639999. In 1973, Serre verified up to m &lt; 10(15), and in 1999, Jordan and Kelly for m &lt; 22689242781695999.
    The theory of spherical t-design, and in particular those which are the shells of Euclidean lattices, is closely related to the theory of modular forms, as first shown by Venkov in 1984. In particular, Ramanujan's tau-function gives the coefficients of a weighted theta series of the E-8-lattice. It is shown, by Venkov, de la Harpe, and Pache, that tau(m) = 0 is equivalent to the fact that the shell of norm 2m of the E-8-lattice is an 8-design. So, Lehmer's conjecture is reformulated in terms of spherical t-design.
    Lehmer's conjecture is difficult to prove, and still remains open. In this paper, we consider toy models of Lehmer's conjecture. Namely, we show that the m-th Fourier coefficient of the weighted theta series of the Z(2)-lattice and the A(2)-lattice does not vanish, when the shell of norm in of those lattices is not the empty set. In other words, the spherical 5 (resp. 7)-design does not exist among the shells in the Z(2)-lattice (resp. A(2)-lattice).

    DOI J-GLOBAL

  • Nonexistence for extremal Type II Z_2k-Codes

    Tsuyoshi Miezaki

    Kumamoto Journal of Mathematics   23   27 - 35  2010  [Refereed]

  • Codes, Lattices, Vertex Operator Algebras, from the viewpoint of Design Theory and Modular Forms

       2009.03

  • On the zeros of Hecke-type faber polynomials

    Eiichi Bannai, Koji Kojima, Tsuyoshi Miezaki

    KYUSHU JOURNAL OF MATHEMATICS   62 ( 1 ) 15 - 61  2008.03  [Refereed]

     View Summary

    For any McKay-Thompson series which appear in Moonshine, the Hecke-type Faber polynomial dagger P-n (X) of degree n is defined. The Hecke-type Faber polynomials are of course special cases of the Faber polynomials introduced by Faber a century ago. We first study the locations of the zeros of the Hecke-type Faber polynomials of the 171 monstrous types, as well as those of the 157 non-monstrous types. We have calculated, using a computer, the zeros for all n &lt;= 50. These results suggest that in many (about 13%) of the cases, we can expect that all of the zeros of P-n (x) are real numbers. In particular, we prove rigorously that the zeros of the Hecke-type Faber polynomials (of any degree) for the McKay-Thompson series of type 2A are real numbers. We also discuss the effect of the existence of harmonics, and the effect of a so-called dash operator. We remark that by the dash operators, we obtain many replicable functions (with rational integer coefficients) which are not necessarily completely replicable functions. Finally, we study more closely the curves on which the zeros of the Hecke-type Faber polynomials for type 5B lie in particular in connection with the fundamental domain (on the upper half plane) of the group Gamma(0)(5), which was studied by Shigezumi and Tsutsumi. At the end, we conclude this paper by stating several observations and speculations.

    DOI J-GLOBAL

  • On the zeros of Eisenstein series for Gamma(*)(0)(2) and Gamma(*)(0)(3)

    Tsuyoshi Miezaki, Hiroshi Nozaki, Junichi Shigezumi

    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN   59 ( 3 ) 693 - 706  2007.07  [Refereed]

     View Summary

    We locate all of the zeros of the Eisenstein series associated with the Fricke groups Gamma(0)*(2) and Gamma(0)*(3) in their fundamental domains by applying and expanding the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer ("On the zeros of Eisenstein series", 1970).

    DOI J-GLOBAL

  • Question and Answer Check System for Mathematics on the Web

    Seiichi Toyota, Tsuyoshi Miezaki, Masakazu Suzuki

    Proceedings of the Seventh Asian Symposium on Computer Mathematics     263 - 266  2005  [Refereed]

▼display all

Misc

  • On the support designs of extremal binary doubly even self-dual codes (vol 72, pg 529, 2014)

    Naoyuki Horiguchi, Tsuyoshi Miezaki, Hiroyuki Nakasora

    DESIGNS CODES AND CRYPTOGRAPHY   73 ( 3 ) 1027 - 1028  2014.12

    Other  

    DOI

  • The McKay-Thompson series of Mathieu Moonshine modulo two

    Thomas Creutzig, Gerald Hoehn, Tsuyoshi Miezaki

    RAMANUJAN JOURNAL   34 ( 3 ) 319 - 328  2014.08

    Article, review, commentary, editorial, etc. (international conference proceedings)  

     View Summary

    In this note, we describe the parity of the coefficients of the McKay-Thompson series of Mathieu moonshine. As an application, we prove a conjecture of Cheng, Duncan, and Harvey stated in connection with umbral moonshine for the case of Mathieu moonshine.

    DOI

  • Eisenstein series and E-polynomials

    Tsuyoshi Miezaki

    RIMS研究集会「有限群とその表現, 頂点作用素代数, 代数的組合せ論の研究」報告集    2014

    Article, review, commentary, editorial, etc. (international conference proceedings)  

  • デザイン理論から見た,符号,格子及び頂点作用素代数の一つの類似

    Tsuyoshi Miezaki

    RIMS研究集会「デザイン、符号、グラフおよびその周辺」報告集    2014

    Article, review, commentary, editorial, etc. (international conference proceedings)  

  • Eisenstein series and E-polynomials

    Tsuyoshi Miezaki

    RIMS研究集会「有限群とその表現, 頂点作用素代数, 代数的組合せ論の研究」報告集    2014

    Article, review, commentary, editorial, etc. (international conference proceedings)  

  • デザイン理論から見た,符号,格子及び頂点作用素代数の一つの類似

    Tsuyoshi Miezaki

    RIMS研究集会「デザイン、符号、グラフおよびその周辺」報告集    2014

    Article, review, commentary, editorial, etc. (international conference proceedings)  

  • The McKay-Thompson series of Mathieu Moonshine modulo two

    Thomas Creutzig, Gerald Höhn, Tsuyoshi Miezaki

    Ramanujan Journal   34 ( 3 ) 319 - 328  2014

    Article, review, commentary, editorial, etc. (international conference proceedings)  

     View Summary

    In this note, we describe the parity of the coefficients of the McKay-Thompson series of Mathieu moonshine. As an application, we prove a conjecture of Cheng, Duncan, and Harvey stated in connection with umbral moonshine for the case of Mathieu moonshine. © 2014 Springer Science+Business Media New York.

    DOI

▼display all

Research Projects

  • 保型形式および多項式不変量を用いた対称性の探求

    日本学術振興会  科学研究費助成事業

    Project Year :

    2018.04
    -
    Now
     

  • E-多項式と組合せ論

    日本学術振興会  科学研究費助成事業

    Project Year :

    2017.04
    -
    Now
     

  • 離散構造における不変量と対称性

    日本学術振興会  科学研究費補助金

    Project Year :

    2022.04
    -
    2026.03
     

  • 保型形式を用いた対称性の探求

    日本学術振興会  科学研究費助成事業

    Project Year :

    2015.04
    -
    2018.03
     

  • 有限群と格子を用いた球デザインの構成

    日本学術振興会  科学研究費助成事業

    Project Year :

    2014.04
    -
    2017.03
     

  • 保型形式を用いた対称性の探求

    山形大学  住友財団 基礎科学研究助成

    Project Year :

    2014.10
    -
    2016.09
     

  • 符号,格子及び頂点作用素代数の対称性

    科学研究費助成事業

    Project Year :

    2012.04
    -
    2016.03
     

    三枝崎剛

  • 符号,格子及び頂点作用素代数の対称性

    日本学術振興会  科学研究費助成事業

    Project Year :

    2012.04
    -
    2015.03
     

  • デザイン理論を用いた符号・格子及び頂点作用素代数の研究

    日本学術振興会  科学研究費助成事業

    Project Year :

    2010.04
    -
    2012.03
     

  • デザイン理論を用いた符号・格子及び頂点作用素代数の研究

    日本学術振興会  科学研究費助成事業

    Project Year :

    2010
    -
    2011
     

    三枝崎剛

  • 保型形式及びFaber多項式の零点配置と球面上の代数的組合せ論に関する研究

    日本学術振興会  科学研究費助成事業

    Project Year :

    2008.04
    -
    2010.03
     

    三枝崎剛

  • 保型形式及びFaber多項式の零点配置と球面上の代数的組合せ論に関する研究

    日本学術振興会  科学研究費助成事業

    Project Year :

    2008
    -
    2010
     

    三枝崎剛

▼display all

Presentations

  • A generalization of the Tutte polynomials

     [Invited]

    P-positivity in Matroid Theory and related Topics 

    Presentation date: 2021.10

  • 符号,格子と頂点作用素代数におけるレーマー型問題

     [Invited]

    第66回 代数学シンポジウム 

    Presentation date: 2021.09

  • タット多項式とコンウェイの問題の高次数化

     [Invited]

    早稲田整数論セミナー 

    Presentation date: 2021.04

  • Recent advances in matroids and Tutte polynomials

    Tsuyoshi Miezaki  [Invited]

    A generalization of the Tutte polynomials 

    Presentation date: 2019.07

  • 神楽坂代数セミナー

    Tsuyoshi Miezaki  [Invited]

    マシュー群に関係するモックテータ関数のフーリエ係数について 

    Presentation date: 2018.12

  • 数理経済談話会

    Tsuyoshi Miezaki  [Invited]

    タット多項式の高種数化 

    Presentation date: 2018.11

  • タット多項式の高種数化

    Tsuyoshi Miezaki, Manabu Oura, Tadashi Sakuma, Hidehiro Shinohara

    日本数学会秋季総合分科会 

    Presentation date: 2018.09

  • 完全巡回指数の導入

    Tsuyoshi Miezaki, Manabu Oura  [Invited]

    日本数学会秋季総合分科会 

    Presentation date: 2018.09

  • 大阪組合せ論セミナー

    Tsuyoshi Miezaki  [Invited]

    デザイン理論について 

    Presentation date: 2016.06

  • Intersection of Pure Mathematics and Applied Mathematics VIII: Special

    Tsuyoshi Miezaki  [Invited]

    2次形式の表現数と符号理論 

    Presentation date: 2015

  • Intersection of Pure Mathematics and Applied Mathematics VIII: Special

    Tsuyoshi Miezaki

    2次形式の表現数と符号理論 

    Presentation date: 2015

▼display all

 

Syllabus

▼display all

Teaching Experience

  • 幾何学特論A演習

    琉球大学  

  • 幾何学特論A

    琉球大学  

  • 卒業研究

    琉球大学  

  • 微分積分学入門I

    琉球大学  

  • 数の文化

    琉球大学  

  • 微分積分学入門II

    琉球大学  

  • 幾何学特論B演習

    琉球大学  

  • 幾何学特論B

    琉球大学  

  • 幾何学序論II演習

    琉球大学  

  • 幾何学序論II

    琉球大学  

▼display all

 

Social Activities

  • 教員免許更新講習(身の回りにある対称性の観察)

    2019.07
    -
     

  • 教員免許更新講習(結び目理論の紹介)

    2019.07
    -
     

  • ひらめき☆ときめきサイエンスー結び目の数学ー

    日本学術振興会  琉球新報 

    2018.08
    -
     

  • 公開講座

    琉球大学 

    2018.07
    -
     

  • 数学オリンピック財団主催夏季セミナー講師

    数学オリンピック財団  (ヴィラ千ヶ滝,.) 

    2012.08
    -
     

Media Coverage

  • 教員免許更新講習

    2013.12