Updated on 2022/07/02

写真a

 
OTANI, Mitsuharu
 
Affiliation
Faculty of Science and Engineering
Job title
Professor Emeritus

Education

  •  
    -
    1978

    university of Tokyo   Graduate School, Division of Science  

  •  
    -
    1973

    Waseda University   School of Science and Engineering   Department of Applied Physics  

Degree

  • University of Tokyo   Doctor of Science

  • 東京大学   理学博士

  • 東京大学   理学修士

  • University of Tokyo   (BLANK)

Research Experience

  • 1990
    -
     

    ;Professor, Department of Applied Physics, Waseda University

  • 1990
    -
     

    ;Professor, Dept. of Math. Faculty of Sci. Tokai Univ.

  • 1981
    -
    1990

    ;Associate Professor, Department of Math. Faculty of Sci. Tokai. Univ.

  • 1981
    -
    1983

    ;Visiting Researcher Supported by French Government/Lab. Analyse Numerique Paris (]G0006[) Univ. France

  • 1978
    -
    1981

    Lecturer, Department of Mathematics, Faculty of Science, Tokai Univ.

Professional Memberships

  •  
     
     

    日本数学会

 

Research Areas

  • Basic analysis

Research Interests

  • Nonlinear, Functional Analysis, Partial Differential Equation, Calculus of Variations

Papers

  • Cinfinity-solutions of Porous Medium Equations in RN

    函数方程式分科会/日本数学会(於 早稲田大学)    2000.03  [Refereed]

  • Effect of Weight Function on the Multiplicity of Positive Solutions for Semilinear Elliptic Equations with Nearly Critical Exponent

    函数方程式分科会/日本数学会(於 早稲田大学)    2000.03  [Refereed]

  • Evolution Equations Governed by Subdifferentials in Reflexive Banach Spaces

    函数方程式分科会/日本数学会(於 早稲田大学)    2000.03  [Refereed]

  • Multiple Positive Solutions for Semilinear Elliptic Equations with Nearly Critical Exponent

    偏微分方程式の総合的研究    1999.12  [Refereed]

  • Local Existence of Cinfinity-solutions for Porous Media Equations

    Free Boundary Problems 99    1999.11  [Refereed]

  • 2つの指数をもつある2点境界値問題の解の指数に対する挙動

    実函数論分科会/日本数学会(於 広島大学)    1999.09  [Refereed]

  • 4階非線形楕円型方程式の弱解の非存在について

    函数方程式分科会/日本数学会(於 広島大学)    1999.09  [Refereed]

  • 変数係数をもつ半線形楕円型方程式の外部領域における解の存在条件について

    函数方程式分科会/日本数学会(於 広島大学)    1999.09  [Refereed]

  • Existence of Multiple Solutions for Semilinear Elliptic Equations with Nearly Critical Exponent

    函数方程式分科会/日本数学会(於 広島大学)    1999.09  [Refereed]

  • Quasilinear Elliptic Equations in Unbounded Domains

    Fucik Memorial Workshop 1999    1999.05  [Refereed]

  • Elliptic Equations with Singularity on the Boundary

    Differential and Integral Equations   12; 3, pp.339-349  1999.05  [Refereed]

  • Time Local Estimates for Derivatives of Solutions of Some Doubly Nonlinear Equations

    函数方程式分科会講演アブストラクト/日本数学会(於 学習院大学)   104-105  1999.03  [Refereed]

  • 外部領域における半線形楕円型方程式の正値解について- Supercritical Case

    函数方程式分科会講演アブストラクト/日本数学会(於 学習院大学)   70-71  1999.03  [Refereed]

  • Positeive Solutions for Semilinear Elliptic Equations in Unbounded Domains with Symmetry

    函数方程式分科会講演アブストラクト/日本数学会(於 学習院大学)   68-69  1999.03  [Refereed]

  • Existence of Multiple Positive Solutions for Brezis-Nirenberg Type Equations

    函数方程式分科会講演アブストラクト/日本数学会(於 大阪大学)   88-89  1998.10  [Refereed]

  • 非星状領域における Sobolev 臨界指数を含む非線形楕円型方程式の正値解の非存在について

    函数方程式分科会講演アブストラクト/日本数学会(於 大阪大学)   86-87  1998.10  [Refereed]

  • 境界上に特異性を持つ楕円型方程式の解の非存在について

    函数方程式分科会講演アブストラクト/日本数学会(於 大阪大学)   84-85  1998.10  [Refereed]

  • Degree for subdiffeventials with nonmonotone perturbations

    函数方程式論分科会講演アブストラクト/日本数学会(於 名城大学)    1998.03  [Refereed]

  • C-solutions for porous medium equations with perturbations

    函数方程式論分科会講演アブストラクト/日本数学会(於 名城大学)    1998.03  [Refereed]

  • Approximation for the first eigenvalues of some nonlinear elliptic operators in Banach spaces

    Advances in Mothematical sciences and Applications   8;1,pp.273-283  1998.03  [Refereed]

  • C-solutions of generalized porous medium equations,

    Proceedings of the Conference on "Nonlinear Partial Differential Equations and Applications" ed. by Guo Boling and Yang Dadi, World Scientific   62-70  1998  [Refereed]

  • Dynamical Systems and Time-dependent Subdifferential Operators, Proceedings of the International Conference on Dynamical Systems and Differential Equations,

    Southwest Missouri State University Press,   2, pp.153-161  1998  [Refereed]

  • Local existence of C-solutions for porous medium equations

    Recent topics in Nonlinear Partial Differential Equations/RIMS (Kyoto)    1998.01  [Refereed]

  • Brezis-Nirenberg-type results in strip-like domains

    函数方程式論分科会講演アブストラクト/日本数学会(於 東京大学)    1997.10  [Refereed]

  • 非連結な境界をもつある非線形楕円型方程式の弱解の非存在について

    函数方程式論分科会講演アブストラクト/日本数学会(於 東京大学)    1997.10  [Refereed]

  • 係数関数が境界上に特異性をもつ楕円型方程式について

    函数方程式論分科会講演アブストラクト/日本数学会(於 東京大学)    1997.10  [Refereed]

  • Nonexistence of positive solutions for some quasilinear elliptic equations in striplike domains,

    Discrete and Continuous Dynamical Systems   3;4,pp.565-578  1997.10  [Refereed]

  • Nonexistence of nontrivial solutions of some quasilinear elliptic equations in unbounded domains

    workshop on Nonlinear Partial Differential Equations 1997/Saitama Univ.    1997.09  [Refereed]

  • Smooth solutions for generalized porous medium equations

    International conference on Nonlinear Partial Differentiol Equations and Applications (Chongqing, China)    1997.05  [Refereed]

  • Positive solutions for semilinear elliptic equations in unbounded domains involving critical Sobolev exponent

    函数方程式論分科会講演アブストラクト/日本数学会(於 信州大学)    1997.04  [Refereed]

  • Periodic problems for heat convection equations in noncylindrical domains,

    Funkcialaj Ekvacioj   40;1,pp.19-39  1997.04  [Refereed]

  • Nonexistence of weak solutions of nonlinear elliptic equations in exterior domains,

    Houston J. Math.   23;2,pp.264-290  1997  [Refereed]

  • Gradient estimates for solutions of some non-Newtonian filtration problems,Free Boundary Problems and Applications

    Addison Wesley Longman(with Y.Sugiyama)    1996.12  [Refereed]

  • Smooth Solutions for Porous Medium Equations

    Conference on Nonlinear Differential Equations,National Chung-Cheng University Taiwan    1996.11  [Refereed]

  • Semilinear Elliptic Equations with Unbounded Coefficients on the Boundary

    International Conference on Evolution Equations and Their Applications to Techonology.Hiroshima Japan(with Satoshi HASHIMOTO)    1996.10  [Refereed]

  • Approximation for the First Eigenvalues of Some Nonlinear Elliptic Operators in Banach Spaces

    International Conference on Functional Analysis and Global Analysis.Manila Philippines(with Eduardo B.Chan.et al)    1996.10  [Refereed]

  • Approximation of some elliptic equations in Banach spaces

    International Conference on Functional Analysis and Global Analysis.Manila Philippines(with C.Agapito,L.Parades,R.Rey P.Sy)    1996.10  [Refereed]

  • A semigroup approach for the Zakharov equations

    International Conference on Functional Analysis and Global Analysis.Manila Philippines    1996.10  [Refereed]

  • C-regularity for generalized porous medium equations

    関数方程式分科会講演アブストラクト/日本数学会(於都立大学)    1996.09  [Refereed]

  • Dynamical Systems and Time-dependent Subdifferential Operators

    International Conference on Dynamical Systems and Differential Equations.USA(with Masanobu Shinba)    1996.05  [Refereed]

  • 柱状領域における準線形楕円型方程式の正値解の非存在について

    関数方程式分科会講演アブストラクト/日本数学会(於新潟大学)    1996.04  [Refereed]

  • 時間に依存する劣微分作用素によって支配される非線形発展方程式の antiperiodic 解の存在

    実函数論分科会講演アブストラクト/日本数学学会    1995.09  [Refereed]

  • On some semilinear elliptic equations with singular coefficients on the boundary

    関数方程式分科会講演アブストラクト/日本数学学会    1995.09  [Refereed]

  • Time local estimates for derivatives of solutions of porous medium equations

    関数方程式分科会講演アブストラクト/日本数学学会    1995.09  [Refereed]

  • 劣微分作用素に対する写像度について

    実函数論分科会講演アブストラクト/日本数学会(於都立大学)    1995.09  [Refereed]

  • Gradient estimates for solutions of some non-Newtonian filtlation problems

    International Conference FBP '95    1995.06  [Refereed]

  • Heat convection equations in noncylindrical domains

    Nonlinear Analysis and Applications (with H. Inoue)/GAKUTO Inter. Ser. Math. Sci. Appl.   7  1995  [Refereed]

  • Pohozaev-type inequalities for some quasilinear eliptic equations

    Nonlinear Analysis and Applications (with T. Hashimoto)/GAKUTO Inter. Ser. Math. Sci. Appl.   7  1995  [Refereed]

  • The first eigenvalues of some abstract eliptic operators

    Funkcialaj Ekvacioj (with T. Idogawa)   38;1  1995  [Refereed]

  • Almost periodic solutions of periodic systems governed by subdifferential operators

    Proc. A. M. S.   123;3  1995  [Refereed]

▼display all

Works

  • An introduction to nonlinear evolution equations,発展方程式若手セミナーSummer Seminar Note

    1983
    -
     

Research Projects

  • 放物型方程式論の深化と放物型性の起源の探索

    Project Year :

    2018.04
    -
    2022.03
     

     View Summary

    研究課題に関して以下の成果が得られた.(1) 従来のミトコンドリア膨潤モデルは,ミトコンドリアの空間移動は考慮されていなかったが,実際には空間移動することが知られている.空間移動の効果を考慮したPDEモデルを構築し,解の存在と一意性及び解の長時間漸近挙動に関する解析を行った.(2) 退化する準線形作用素を主要項として持つ複素ギンツブルグ-ランダウ方程式の可解性を示した.従来の研究で仮定されていた方程式に現れるパラメータに関する技術的な条件を外し,かつ対象とする領域を一般の非有界領域にまで拡張した.コンパクト性の欠如を,局所強収束性と対角線論法で補い,技術的な条件を外す為に報告者によって開発された「劣微分作用素に対する非単調摂動理論」を援用した.(3) 非有界領域における二重拡散対流方程式の時間周期問題は,方程式の強圧性とコンパクト性の欠如から,難しい未解決問題として残されていた.方程式に付随するエネルギー空間の全空間におけるスケール変換不変性を巧みに利用することによりこれらの困難を解決することに成功した.(4) 対流項とヒステリシス効果を有する放物型方程式系の解の存在を従来の仮定を大幅に緩和した条件のもとに示した.報告者の開発した L∞エネルギー法(ソボレフの埋蔵定理に依らずL∞評価を可能にするエネルギー法)を改良することによって従来よりも複雑な方程式系にも適用することが可能になった.(5) 解の時間微分にラプラス作用素のα次の分数冪を作用させた強消散項を有する波動方程式の放物型性を解析し「αが大きくなればなるほど,方程式の放物型性が増す」という予想を覆す現象が発見された.放物型性の起源を探る上で貴重な予備的結果である.研究目的に掲げた,具体的研究計画に対しておおむね計画に沿った成果が得られている.さらに,次年度以降の目標に対する予備的な研究成果も十分に得られている.(1) 集合値項をもつ放物型方程式:多価作用素項が usc(上半連続)な場合に対する,初期値境界値問題で得られた予備的結果を完成させ論文に纏める.さらに,lsc(下半連続)な場合に対する Fryszkowski’s selection theorem の適用可能性について精査する.(2) ミトコンドリア膨潤モデル:PDE-PDE モデルを更に深化させ,解の存在と解の漸近挙動の解析を行う.さらに,拡散現象が非ニュートン流に従う,準線形問題に対しての解析にも着手する.(3) 双曲型性と放物型性との間に横たわる階層構造の解明:強消散項を持つ波動方程式の放物型性に関する予備的知見を更に進展させ,実解析性やジュブレークラスの平滑化現象のための(必要)十分条件を探る.(4) 複素ギンツブルグ - ランダウ方程式:消散系の方程式に対する時間周期問題をまず,有界領域に対して解析する.パラメーターに対する初期値境界値問題と同じ条件の下で,任意の大きさの外力に対して時間周期解を構成することを目指す

  • 変分的手法による非局所非線形楕円型方程式の研究

    Project Year :

    2017.04
    -
    2022.03
     

  • Study on nonlinear partial differential equations with set-valued perturbations

    Project Year :

    2015.04
    -
    2018.03
     

  • 集合値摂動項を持つ非線形偏微分方程式の研究

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(挑戦的萌芽研究)

    Project Year :

    2015
    -
    2017
     

  • Deepening of the theory of viscosity solutions and its applications

    Project Year :

    2011.04
    -
    2016.03
     

     View Summary

    We investigated the asymptotic problems of partial differential equations such as the long-time asymptotic behavior of solutions of Hamilton-Jacobi equations and viscous Hamilton-Jacobi equation, the vanishing discount problem, and obtained many important new pieces of knowledge regarding these asymptotic problems as well as the theory of viscosity solutions. We developed the basic theory of the existence and uniqueness of solutions for singular diffusion equations and for integral-differential equations. Based on the analysis of solutions of Hamilton-Jacobi-Bellman equations, we established certain estimates on the large-time asymptotic behavior of the minimizing large deviation probabilities, the verification theorem for optimal consumption-investment in a non-complete market model, a new approach to the stochastic optimal transportation problem

  • 変分的手法による非線形楕円型方程式の大域的解析

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(基盤研究(B))

    Project Year :

    2013
    -
    2016
     

     View Summary

    非線形楕円型方程式 (系) に対する特異摂動問題を中心に研究を実施した. 非線形シュレディンガー方程式に対する特異摂動問題に関しては, 局所的な変分法によるアプローチを研究代表者田中は J. Byeon 氏と共に開発し, ポテンシャル関数の極大点, 鞍点に凝集する解の構成に成功した. この構成法は非常に広いクラスの非線形項に対して適用可能であり, 従来の Lyapunov-Schmidt
    法による極限方程式の解の一意性, 非退化性を要求する存在結果を大きく拡張するものである. なお, 本年度の研究において 1 点に与えられた数のピークが凝集する multi-peak 解の存在の構成にも成功している. このようなmulti-peak 解の存在は非退化条件なしには証明されていなかったものである.
    常微分方程式の Lagrange 系に対する特異摂動問題に関しては, 高振動解の adiabatic invariant を用いたプロファイルの決定および与えられた admissible なプロファイルをもつ解の構成を P. Felmer 氏, S. Martinez 氏らと共に行い成功した.
    また 2 次の相互作用をもつ非線形シュレディンガー方程式系について研究代表者は分担者小澤および林氏と共に研究に取り組み, 初期値問題の局所および大域可解性, さらには定在波解の存在を様々な設定の下で行った. また研究分担者小薗は Lax-Milgram 定理の一般化およびその楕円型方程式系への応用を, また連携研究者足達, 佐藤は準線形楕円型方程式, 非線形シュレディンガー方程式系の解の漸近挙動の研究等を行い, 塩路は非線形楕円型方程式の球対称解の研究を行い, 既存の結果をほぼすべて含む, 球対称解の一意性定理を導いた.

  • Study on reaction-diffusion equations and related free boundary problems

    Project Year :

    2012.04
    -
    2015.03
     

     View Summary

    This research is concerned with a free boundary problem for reaction-diffusion equations in mathematical ecology. This problem models the invasion or migration of a certain biological species. Our main interest is to study the evolution of the population density and habitat of the species. The population density is described by a reaction-diffusion equation and the boundary (or a part of the boundary) of the habitat is controlled by a free boundary condition of Stefan type. We could obtain theoretical understanding on asymptotic behaviors of solutions for free boundary problems of various types: whether the species vanishes eventually or the species persists with spreading free boundary. Moreover, we got precise results on the spreading speed of the free boundary

  • Study for hierarchical structure underlying between hyperbolicity and parabolicity

    Project Year :

    2012.04
    -
    2015.03
     

     View Summary

    It is very important to pursue mathematical study for Partial Differential Equations which describe various phenomena arising in natural sciences such as Physics. However, since the behavior of solutions of wave equation, a typical example of hyperbolic equation, and heat equation, a typical example of parabolic equation, is quite different to each other, the method of study and the group of researchers are both separated. Based on the fact that wave equation with strong dissipation acquires some parabolicity which was detected by research representative, we studied some abstract hyperbolic equation with strong dissipation and clarified the mechanism of acquiring the parabolicity and revealed the hierarchical structure underlying between hyperbolicity and parabolicity

  • Synthetic study of nonlinear evolution equation and its related topics

    Project Year :

    2009
    -
    2012
     

     View Summary

    Various types of nonlinear PDEs (nonlinear elliptic equations, nonlinear diffusion equations, nonlinear wave equations, nonlinear Schrodinger equations) arising in physics and engineering were synthetically studied from the viewpoint of the theory of nonlinear evolution equations by using the techniques from the theory of nonlinear functional analysis, the theory of functions of a real variable, the theory of ordinary differential equations and the calculus of variations.

  • Analysis of Reaction-Diffusion Systems and Related Nonlinear Problems

    Project Year :

    2009
    -
    2011
     

     View Summary

    This research project is concerned with the mathematical formulation of non-uniformity of species in mathematical ecology such as the segregation of two competing species and the spreading of invasive species. These phenomena are described by reaction-diffusion equations with population densities as unknown functions. We have obtained satisfactory results on the structure of positive steady-states for two-species models with nonlinear diffusion and the mechanism of spreading and vanishing for free boundary problems in invasion models.

  • A comprehensive study of nonlinear problems via variational approaches

    Project Year :

    2008
    -
    2011
     

     View Summary

    We study nonlinear problems via variational approaches. Especially (1) we study singular perturbation problems for nonlinear Schrodinger equations and systems. We introduce a new purely variational method which enables us to construct concentrating solutions in a very general setting. (2) We study nonlinear elliptic equations and systems in various settings. We give a new variational construction of radially symmetric ground states. We also study stability and instability of solutions. (3) We also study highly oscillatory solutions in 1-dimensional singular perturbation problems. We give characterization and existence result.

  • 非線形放物型方程式のアトラクターの研究

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(萌芽研究)

    Project Year :

    2006
    -
    2008
     

     View Summary

    研究目的にかかげた目標に関する次の幾つかの興味ある成果が得られた。
    (1)我々の先行研究によって、p-Laplacianを主要項に持つ準線形放物型方程式
    u_t=△_p u+uに対する初期値境界値問題に対して、全ての解軌道を引き付ける「大域アトラクター」が、L^2で構成され、さらにそれが無限次元を持つ事実が知られていたが、これはかなり特殊な状況であり、非線形楕円型方程式に関するLyusternik-Scnirelman理論からも、その無限次元性は導出できるという難点があった。
    uをαu-b(x)|u|^q uとしても、大域アトラクターの存在とその無限次元性が導かれる
    ことが示された。これは、より一般的な非線形項f(x, u)に対しても、同様な結果が成立することを示唆する、重要な発見である。
    (2)多孔質媒質中を流れる流体(溶媒)の速度及び温度と流体中の溶質の濃度の振舞いを記述する、2または3次元有界領域におけるBrin kman-Forchheimer方程式の時間大域解の存在と一意性が、H^1に属する初期値に対して、示された。
    これによって、この方程式に対する、大域アトラクターの構成の出発点がクリアーされたことになる。
    また、よく知られているように、3次元空間におけるナビエ・ストークス方程式の一意的時間大域解の存在問題が未解決大問題である事実と比較すると、非常に興味深い知見を与えている。

  • Variational study of nonlinear problems

    Project Year :

    2005
    -
    2007
     

     View Summary

    We study nonlinear elliptic partial differential equations and Hamiltonian systems via variational meth-ods. We put emphasis on singular perturbation problems.
    1. We study the existence of high frequency solutions-families of solutions whose numbers of spikes or layers increase to ∞ as the singular perturbation parameter ε goes to 0. We give the existence and the characterization of such families for 1 dimensional elliptic problems including nonlinear Schrodinger equations, Allen-Cahn equations, Fisher equations and Girerer-Meinhardt systems. Especially for Girerer-Meinhardt systems, we introduce and analyze a limit equation using adiabatic invariants. We also give a precise estimate of the number of positive solutions of nonlinear Schrodinger equations.
    2. We also study a singular perturbation problem for -ε^2△μ+V(χ)μ =g(μ) in R^N. Under very general conditions on g(μ), which is related to the work of Berestycki, Gallouet-Kavian, we prove the existence of a concentrating solution for N=1,2.
    3. We also study the prescribed energy problem for singular first order Hamiltonian systems. We suc-ceed to obtain the existence of periodic orbit under conditions which generalize the strong force condition of Gordon. We remark that our condition is given as a property of the energy surface S={(q, p);H(q, p) =E} not on the Hamiltonian H(q, p).

  • Integrated Study for Nonlinear Evolution Equations and Nonlinear Elliptic Equations

    Project Year :

    2004
    -
    2007
     

     View Summary

    (i) L^∞-energy Method, developed in this research, is applied to the nonlinear parabolic equations with nonlinear terms involving the time derivative to show the existence of the unique local solution. The verification for the uniqueness was difficult for the existing methods because of the lack of regularity. However this method makes it possible by assuring the high regularity of solutions. Furthermore this method turns out to be very effective also for nonlinear parabolic systems for chemotaxis and systems with the hysteresis effect by the fact that it can assure the existence an uniqueness of solution under much weaker conditions than ever
    (ii) The infinite dimensional global attractor is constructed in L^2, which attracts all orbits for the initial boundary value problem for the quasi-linear parabolic equation governed by the p-Laplacian. The infinite dimensional global attractor is never observed for the semilinear parabolic equations, so this very new observation seems to be very important. On the other hand, the existence of the exponential attractor with finite fractal dimension , which attracts all orbits starting from some special class of initial data exponentially, is shown for some special quasilinear parabolic equations involving Laplacian and p-Laplacian., whence follows the finite dimensionality of the global attractor. These observations suggest that in contrast with semilinear equations, there should exist some structure in quasilinear parabolic equations which controls the finite-dimensionality and infinite-dimensionality of global attractors, which gives a very interesting future object ton study.
    iii) It is shown that for Cauchy problem and periodic problem for the abstract evolution equation governed by time-dependent subdifferential operators, if the sequence of approximating subdifferential operators converges to the original one, then the corresponding approximating solutions converge to the solution of the original equation. As for the periodic problem, it is very meaningful to give an affirmative answer to the open problem left long.

  • Research of System of Nonlinear Diffusion Equations and Related Elliptic Differential Equations

    Project Year :

    2003
    -
    2005
     

     View Summary

    In this project, we have studied the structure of solutions for the following two types of equations : (a) reaction diffusion systems with nonlinear diffusion in mathematical biology and (b) semilinear diffusion equations describing phase transition phenomena
    The first problem in mathematical biology is given by a system of differential equations with quasilinear diffusion of the form
    u_t=Δ[φ(u,v)u]+au(1-u-v), v_t=Δ[ψ(u,v)v]+bv(1+du-v),
    under homogeneous Dirichlet boundary conditions. Here u and v denote population densities of prey and predator species, respectively. It is well known that the corresponding stationary problem has a positive steady-state under a suitable condition. Our main interest is to derive useful information on profile and stability of each positive steady-state. In case φ(u,v)=1 and 4,φ(u,v=1+β u, we have shown that the stationary problem has at least three positive solutions if β is sufficiently large and some other conditions are imposed. Moreover, stability or instability of each positive solution is also investigated.
    The second problem is given by u_t=ε^2u_<xx>+u(1-u)(u-a(x)) with homogeneous Neumann boundary condition, where 0<a(x)<1. When ε is sufficiently small, it is known that this problem admits various kinds of steady-state solutions. In particular, we are interested in steady state with transition layers and spikes. Here transition layer for a solution means a part of u(x) where u(x) drastically changes from 0 to 1 or 1 to 0 in a very short interval. Such oscillating solutions have been studied by Ai-Chen-Hastings and our group, independently. It has been proved that any transition layer appears only in a neighborhood of x such that a(x)=1/2 and that any spike appears only in a neighborhood of x such that a(x) takes its local maximum or minimum. We have also established more information on profiles of multi-transition layers and multi-spikes, their location and the relationship between profile and stability of steady-state solution with transition layers.

  • Study of nonlinear differential equations via variational methods

    Project Year :

    2002
    -
    2004
     

     View Summary

    We study the existence and multiplicity of solutions of nonlinear differential equations via variational methods. In particular, we study singular perturbation problems.
    1.We study the existence and multiplicity of solutions of nonlinear scalar field equations : -Δu+V(x)u=f(u) in R^N. Usually in such a problem global conditions on nonlinearity f(u)(ex.global Ambrosetti-Rabinowitz condition) are required to ensure the existence of solutions. In this study we tried to obtain an existence result without such global assumptions and we find that it is possible if we require sufficiently fast decay of the potential V(x).
    2.We also study singular perturbation problem : -Δu+λ^2a(x)u=|u|^<p-1>u in R^N, where a(x)【greater than or equal】0. As a limit problem as λ→∞, a Dirichlet boundary value problem -Δu=|u|^<p-1>u, u|_<∂Ω>=0 in Ω≡{x ∈R^N;a(x)=0} appears. We assume Ω consists of several bounded connected components Ω_1,【triple bond】, Ω_κ and for given solutions u_i(x) of the Dirichlet problem in Ω_i, we try to find a solution u_λ(x) in R^N whose limit is u_i(x) in Ω_i (connecting problem). We succeed to find a solution joining Mountain Pass solutions without non-degeneracy conditions. Also we show that there are infinitely many sign-changing solutions that are connectable with Mountain Pass solutions.
    3.For 1-dimensional Allen-Cahn equations and Schrodinger equaitons, we study the characterization of a family of solutions in the setting of singular perturbation. More precisely, we consider a family of solutios with increasing number of layers or spikes. We give a characterization of such a family using "limit enery function" or "envelop function". Conversely for addmissible patterns we construct corresponding families of solutions via variational methods.

  • Study on Nonlinear Evolution Equations and Nonlinear Elliptic Equations

    Project Year :

    2000
    -
    2003
     

     View Summary

    (1)"L^∞-energy method" is invented. This assures the high differentiablity of solutions of quasilinear parabolic equations. By this method, the existence of W^<1. ∞>-solutions for a general doubly nonlinear parabolic equations and the open problem : "porous medium equations admit C^∞-solutions?" is solved affirmatively. Recent studies suggest that this gives a quite powerful tool for various problems.
    (2)"The theory of nonmonotone perturbations for subdifferentials " is extended to Banach space setting. By this theory, we can treat the existence and regularity of solutions for degenerate parabolic equations in a more natural way than Galerkin' s method and open problems, left unsolved in the usual way, were solved.
    (3)A Concentration Compactness (CC) theory with partial symmetry is given. The usual CC theory is known to be useful to analyze the problem with lack of compactness. On the other hand, the high symmetry such as the radial symmetry often recovers the compactness. It is studied how the partial symmetry not enough to recover compactness is reflected to CC theory. By this theory, the existence of nontrivial solutions is proved for some quasilinear elliptic equations in infinite cylindrical domains.
    (4)The classical "Principle of Symmetric Criticality (PSC)" by R.Palais assures that under suitable conditions, critical points in the subspace with the symmetry give real critical points in the whole space, but is restricted to the system with variational structures. PSC is extended to a more general theory which covers the elliptic systems without full symmetry or evolution equations including time evolution terms.
    (5)A new degree theory is established. It can teat mutivuled operators including subdifferential operators and cover nonlinear PDE with various multivaluedness nature.
    (6)The theory of nonmonotone perturbations for subdifferentials is ameliorated to cover the initial-boundary value problems and time periodic problems for magneto-micropolar fluid equations.

  • Analysis of nonlinear diffusion equations and related phase transition problems

    Project Year :

    2000
    -
    2002
     

     View Summary

    In our project we have mainly discussed the stationary and non-stationary problems for the following reaction diffusion systems with quasilinear diffusion terms:
    (E) u_l = Δ[(1 + αv + γu)u] + uf (u, v), v_l = Δ[(1 + βv + δv)v] + vg (u, v).
    This is a well-known system which models the habitat segregation phenomenon between two species. In (E) u, v denote the population densities and f, g represent the interaction between u and v such as Lotka-Volterra competition type or prey-predator type.
    (1) Non-stationary problem. When the system has a cross-diffusion effect, the existence result of global solutions was restricted to the two dimensional case. We have proved that, if α, γ > 0 and β = δ = 0, then (E) admits a unique global solution without any restrictions on the space dimension and the amplitude of initial data. Our strategy is to decouple the system and study reaction-diffusion equations separately. We combine parabolic fundamental estimates with energy estimates of solutions of parabolic equation with self-diffusion. This method is also valid for the case δ > 0; so that the global existence is shown when the space dimension is less than six.
    (2) Stationary problem. From the view-point of mathematical biology, it is very important to study positive stationary solutions and to know their number. We have tried to get some conditions for the multiplicity of such positive solutions. In particular, the multiple existence is established if interactions are very large in case of competition model with linear diffusion or if one of cross-diffusion is very large in case of prey-predator model.

  • Variational study of nonlinear diffential equations

    Project Year :

    1999
    -
    2001
     

     View Summary

    We study the existence problems for nonlinear differential equations via variational methods. We mainly dealt with nonlinear elliptic problems and Hamiltonian systems.
    1. We study the existence and multiplicity of positive solutions of nonlinear scalar field equations in unbounded domains. In particular, we are concerned with equations which depend on the space variable x and we investigate the effects of the inhomogeneity (dependence on the space variable x) on the set of solutions of the scalar field equation. We find a very delicate dependence ― very small inhomogeneity induces a big change in the set of soluitons ― and we find an example of nonlinear scalar field equation which has 4 positive solutions after very small but not zero pert perturbation.
    2. We also consider the singular perturbation problems for nonlinear elliptic problems. We get 2 results : (a) for 1-dimensional setting we introduce a new finite dimensional reduction and we succeed to prove the existence of solutions with a cluster of interior or boundary layers for inhomogeneous Allen-Cahn type equations. We also succeed to prove the existence of solutions with a cluster of spikes for nonlinear Schrodinger equations. (b) We give a mountain pass characterization of positive solutions for a wide class of nonlinear elliptic equations. As an application, we show the existence of a spike solution for a wide class of nonlinear elliptic equations including asymptotically linear equations.
    3. For Hamiltonian systems we deal with singular Hamiltonian systems with 2-body type singularities. In case the potential V(q) has more than 3 strong force type singularities we find a family of very complex solutions which are related with symbolic dynamical systems. We also deal with the case the set S of singularity is not a point and it has a positive volume. We consider the case where V(q) 〜 - 1/ dist (q, S)^α and we find the existence of non-collision solutions for all positive α > 0, that is, even for weak force case 0 < α < 2.

  • Modelling and analysis of nonlinear phenomena with phase transitions

    Project Year :

    1999
    -
    2000
     

     View Summary

    In this project, various linear or nonlinear systems such as phase transition models And reaction-diffusion equations from the view-point of the linear or non-linear Operator theory, and a lot of results, which are of high level especially from an interdisciplinary point of view, has been established. For instance,
    (1) A stability theory for a class of nonlinear systems of parabolic PDEs, which includes a mathematical model for solid-liquid phase transition in the mesoscopic length scale, was evolved. In this theory, a new concept "the local in space stability" was introduced. This is quite reasonable from the physical point of view ; in fact, within this concept the growth or disapprearance of phases are able to be theoretically explained.
    (2) It is a very convenient mathematical approach to describe various nonlinear time dependent processes as (autonomous or nonautonomous) dynamical systems, when one wants to know the asymptotic behavior of the processes as time goes to infinity. There is a concept of global attractors of dynamical systems for this purpose. We established a general method for the construction of global attractors of dynamical processes of a class wide enough.

  • On the Ginzburg-Landau model in the presence of an externally imposed magnetic field

    Project Year :

    1997
    -
    2000
     

     View Summary

    1. It is shown that a way of phenomenological description of the mosaic state in a superconductor under an applied magnetic field leads to consider the minimizing problem of the Gibbs free energy under the constraints of complete expulsion of magnetic field from the parts of superconductor.
    2. The initial-boundary value problem for the time-dependent Ginzburg-Landau-Maxwell equations is considered. The global existence and uniqueness theorems of L_2 weak or strong solutions are established via Fadeo-Galerkin's method. As to the parabolic version, the local existence of L_3 solutions is obtained by the semigroup approach for both bounded and exterior problems.
    3. Numerical experiments of solutions to the parabolic version of the time dependent Ginzburg-Landan-Maxwell equations are obtained by the finite difference methods.

  • Study of nonlinear prabolic systems and related elliptic systems

    Project Year :

    1997
    -
    1999
     

     View Summary

    (1) Analysis of reaction diffusion systems with cross-diffusion terms : We have discussed reaction diffusion systems with cross-diffusion and reaction of Lotka-Volterra type. These systems appear in mathematical biology. Mathematically, it is very important to derive sufficient conditions for the existence of time-global solutions and get information on the structure of positive stationary solutions (biologically, coexistence states). As to the non-stationary problem a global existence result has been obtained in one and two space-dimensions. For the stationary problem with zero Dirichlet boundary condition, we have studied uniqueness and non-uniqueness of positive stationary solutions as well as sufficient conditions for their existence. It is proved that our system admits multiple existence of postive solutions. Moreover, numerical simulations exhibit complicate structure of positive stationary solutions such as bifurcation of symmetric solutions from semitrivial solutions and, additionally, bifurcation of asymmetric solutions from symmetric ones.
    (2) Analysis of quasilinear parabolic equations with p-Laplacian and logistic terms : Although the nonlinearity and degeneracy of p-Laplacian brings about the difficulty, it also gives remarkable nonlinear phenomenon. We have obtained satisfactory understanding on the structure of stationary solutions in higher space dimension as well as one dimension. In particular, we also have studied profiles of stationary solutions and proved interesting results on flat hats which stem from degenerate diffusion. Furthermore, we could show interesting information on the temporal and spatial change of non-stationary solutions.

  • Nonlinear Evolution Equations and Elliptic Equations

    Project Year :

    1997
    -
    1999
     

     View Summary

    Elliptic Equations (1) Concerning the equation (E) - △u = |u|ィイD1q-2ィエD1u x ∈Ω, u(x) = 0 x ∈∂Ω we obtained the following results.
    Let Ω = RィイD1NィエD1\BィイD2R1ィエD2, BィイD2RィエD2 = {x ∈ IRィイD1NィエD1 ; |x|【less than or equal】 R }, 2ィイD1*ィエD1<q< +∞ (2ィイD1*ィエD1 is the critical exponent for Sobolev's embedding HィイD31(/)0ィエD3 (Ω) ⊂ LィイD1qィエD1 (Ω) ), then (E) admits a radially symmetric solution in HィイD11ィエD1 (Ω) ∩ LィイD1qィエD1 (Ω). This fact has been conjectured from the duality between bounded domains and exterior domains.
    (II) Consider the equation : (E)ィイD2λィエD2 -△u = λu + |u|ィイD1q-2ィエD1u x ∈Ω, u(x) = 0 x ∈∂Ω (1) Let Ω = ΩィイD2dィエD2 × λRィイD1N-dィエD1, (ΩィイD2dィエD2 is a bounded domain in IRィイD1dィエD1), q = 2ィイD1*ィエD1, d【greater than or equal】 1, N 【greater than or equal】 4, then for all λ ∈ (0, λィイD21ィエD2), λィイD21ィエD2 = infィイD2v∈HィイD31(/)0ィエD3 (Ω)ィエD2‖∇ィイD2uィエD2‖LィイD42ィエD4ィイD12ィエD1/‖u‖LィイD42ィエD4ィイD22ィエD2 > 0, (E)ィイD2λィエD2 has a nontrivial solution, which gives a generalization of the well-known result of Brezis-Nirenberg to unbounded cylinders. (2) Let Ω = ΩィイD2dィエD2 x RィイD1N-dィエD1 and let ΩィイD2dィエD2 be a d-dimensional annulus. ・ If q 【greater than or equal】 NィイD2dィエD2 = 2 (N -d+1)/(N-d+1-2) , then (E)ィイD2λィエD2 admits no nontrivial weak solution.
    ・ If q < NィイD2dィエD2, then (E)ィイD2λィエD2 admits a nontrivial weak solution.
    These results reveal the fact that the d-dimensional symmetry reduces the effective dimension by (d-1).
    (III) Consider (E)ィイD21ィエD2 -Δu + u = a(x) |u|ィイD1q-2ィエD1u + f(x) x ∈ IRィイD1NィエD1, 2 < q < 2ィイD1*ィエD1 o < a(x), |a(x) - 1| 【less than or equal】 CeィイD1λ|x|ィエD1, λ > 0 It is shown that if ‖f‖ィイD2H-1(RィイD1NィエD1)ィエD2 is sufficiently small, then (E)ィイD21ィエD2 has at least two positive solutions. Furthermore, we found that for the case where f = 0 and q < 2ィイD1*ィエD1 is close enugh to 2ィイD1*ィエD1,the multiplicity of positive solutions depends upon the topological property (su as category) of the set {x ∈Ω ; u(x) = maxィイD2x∈ΩィエD2 }.The analysis of this phenomenon will be an interesting subject to study in future.
    Parabolic Equations (I) It has been well known that weak solutions of porous medium equations enjoy the Holder continuity. However, the existence of smooth (local) solutions has been left as an open problem for long time. Otani-Sugiyama gave an affirmative answer to this open problem, by developing the LィイD1∞ィエD1-energy method, which was introduce by themselves to show the local existence of WィイD11,∞ィエD1-solutions for more general doubly nonlinear parabolic equations. This is the most fascinating result among our results obtained in this reseach project.
    (II) It was left as an unsolved problem to determine the asymptotic behabiour of solutions of (P) uィイD2tィエD2, -Δu = |u|ィイD12ィイD1*ィエD1-2ィエD1u x∈Ω, u(x) = 0 x∈∂Ω. To this problem, the following partial answer was obtained. 「Let Ω = {x ∈ RィイD1nィエD1 : |x|< 1 } and the solution u (x.t) be positive, radially symmetric and monotone decreasing with respect to r = |x|. Then u blows up in a finite time or becomes a global solution and satisfies the following property : 「There exists a sequence {tィイD2nィエD2 } such that |∇u (x,tィイD2nィエD2)|ィイD12ィエD1 - CoィイD1δィエD1(0) (u - x), |u (x,tィイD2nィエD2)|ィイD12ィエD1 - CoィイD1σィエD1(0) (u - x). 」 This result give some information about the problem above to some extent. However, since strong technical condtions are assumed. We need further in vestigation to solve this problem in a natural setting.

  • Mathematical Research of Nonlinear Phenomena with Phase Transitions

    Project Year :

    1997
    -
    1998
     

     View Summary

    The main objective of this project is to treat various nonlinear phenomena with phase transitions from interdisciplinary points of view. Our research is concerned with their modellings and theoretical analysis by using tools in nonlinear functional analysis for instance the subdifferential operaors theory of convex functions.
    During the term of this project we found that many solid-liquid or solid-solid phase transition models are able to be handled within the perturbation theory of nonlinear evolution equations generated by subdifferentials in Hilbert spaces. Moreover, we pro- posed a class big enough of dynamical processes, including nonlinear phenomena in our consideration as typical examples, and evolved the stability theory for it ; in fact, we suc- ceeded in the construction of global attractors. In our set-up, one of the most important characteristics is that the domain of dynamical process depends upon time.
    Also, as co-products of our results obtained in this project, an important question, which had been remained open for 30 years, about nonlinear elliptic operators was solved. This is a big contribution in this field, too.

  • 非線形放物型方程式系と関連する楕円型方程式系の研究

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(基盤研究(C))

    Project Year :

    1996
     
     
     

     View Summary

    今年度の研究成果は、"cross-diffusion"と呼ばれる拡散項をもつLotka-Volterra型モデルに対する定常解集合の研究と、退化型拡散項(p-Laplacian)をもつ放物型方程式の解のダイナミックスの研究の二つに分けられる。
    1.数理生態学における"biodiffusion"のなかには"cross-diffusion"と呼ばれる重要な非線形拡散がある。同一の領域で生存競争している2種以上の生物の固体密度を未知関数として定式化すると、"cross-diffusion"の効果により、拡散係数が固体密度にも依存するような準線形拡散方程式系となる。このようなモデルは1979年に提起され、数値実験では分岐やパターンの形成などの興味深い現象が見られるにもかかわらず、理論的な解析は十分ではない。我々の研究グループは数年前から正値定常解集合の解明に取り組み、正値解が存在するための十分条件や必要条件を見いだしている。今年度は解の多重性に関して非線形拡散がいかなる影響を及ぼすかを調べ、写像度の理論と分岐理論を組み合わせて、正値定常解が2個以上存在する状況を新たに発見した。
    2.p-Laplacianを含む拡散方程式にたいしてChafee-Infanteタイプの非線形項を付け加え、解の挙動、定常解集合の構造、安定性を研究した。空間次元1のケースに限定されるが、定常解集合の構造を完全に解明することができた。とくにp-Laplacianの退化性のため、定常解集合の構造は非退化のときと全く異なり、非可算集合となる。さらに、解のプロフィール、解の分岐構造、解の個数、安定性について今まで知られていなかった情報が得られた。今後は、空間次元の高いときの解集合の構造も調べたい。

  • 非線形楕円型方程式とその周辺に関する研究

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(基盤研究(C))

    Project Year :

    1996
     
     
     

     View Summary

    計画調書の研究目的にかかげた目標に関連した主たる成果は以下の通りである。
    1.非線形項が境界で特異性を有する半線形楕円型方程式 -Δu(χ)=Κ(χ)u^β(χ)/(1-|χ|)^α χ∈B={χ∈R^N;|χ|<1}に対して、変分的手法により以下の結果を得た。
    (1)β+1【greater than or equ
    非自明古典解(C^2(B)∩C^1(B^^-)に属する解)は存在しない。
    (2)0<α<min(β+1,(β+1)/2+1),α<2^*=(N+1)(N-2) ならば、非自明古典解が存在する。
    (3)0<β【less than or equal】1,β+1【less than or equal】α<(β+1)/2+1 ならば、Holder連続な非自明解が一意的に存在する。これらの成果は、従来の結果を大幅に改良したもので、その全貌がほぼ解明されたと言える。しかしながら、1<β,(β+1)/2+1【less than or equal】α<β+1 の場合の
    2.非有界領域における弱解に対するPohozaev型の不等式が、星状領域の外部領域及び柱状領域に対して確立され、準線形楕円型方程式の弱解の非存在に応用された。この結果、解の存在・非存在に関して、星状領域の内部と外部との双対性が明らかにされ、この分野における重要な知見が得られた。
    3.Pohzaev型の(不)等式に依らない、正値解の非存在の為の新たな手法の端緒が開かれた。これは、領域は平行移動不変性と正値解の一意性の議論を組み合わせた議論によるもので、正値解の一意性がよく調べられている、固有値問題、sub-linear(sub-principal)caseに対して有力な道具を提供するものである。この手法のより一般的な場合への拡張が期待される。
    その他、これに関連する周辺の成果も多数得られている。

  • MATHEMATICAL ANALYSIS AND NUMERICAL ANALYSIS OF SEVERAL KINDS OF DIFFERENTIAL EQUATIONS.

    Project Year :

    1994
    -
    1996
     

     View Summary

    To solve non-symmetric linear systems derived from the discretization of singular pertur-bation problems, we propose a generalized SOR method with multiple relaxation parameters, that is the improved SOR method with orderings and study its theory and practical use.
    In the case of tridiagonal matrices, optimal choices of the parameters are examined : It is shown that the spectral radius of the iterative matrix is reduced to zero for a pair of parameter values which are computed from the pivots of the Gaussian elimination applied to the system. A proper choice of orderings and starting vectors for the iteration is also proposed.
    We apply the above method to two-dimensional cases, and propose the "adaptive improved block SOR method with orderings" for block tridiafonal matrices. The point of this method is to change the multiple relaxation parameters not only for each block but also for each iteration. If special multiple relaxation parameters are selected and used with this method for an n * n block tridiagonal matrix whose block matrices are all n * n matrices, then this iterative method converges at most n^2 iterations.
    We also proposed the improved SSOR method with orderings, which converges at most only one iteration for a tridiagonal system, and n iterations for a block tridiagonal system.
    The generalized convergence theorems to the improved SOR method with orderings are also considered, and we study necessary and sufficient conditions for a matrix to be a generalized diagonally dominant.
    Using the notation 'basic LUL factorization' of matrices, we give some techniques to obtain special multiple relaxation parameters such that the spectral radius of the iterative matrix is zero for the Hessenberg matrices and a class of matrices.

  • 非線形偏微分方程式系の総合的研究

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(一般研究(C))

    Project Year :

    1994
     
     
     

     View Summary

    研究代表者及び理工学部所属の解析学分野分担者を中心とした、外部にも開かれた定期セミナーを早稲田大学理工学部内において週一回(計21回)開催した。この会(応用解析研究会)には、研究分担者のみならず、東京近郊の若手研究者が多く参加し、研究課題関連の話題について活発な討論、意見交換がおこなわれ、研究を遂行する上で非常に有意義であった。また研究経過発表会を数回おこなった。具体的成果については、個々の単独(非線形楕円形、放物型、双曲型、分散型)方程式に関する多くの成果のほかに、Davey-Stewartson(完全流体の表面波)方程式系に対し、弱解の存在と一意性及びその漸近挙動(時間とともに解のある種ノルムが零に近づく)が解明された。
    また、界面で化学反応を起こしている拡散方程式系、伝染病をモデル化した反応拡散系について、大域解の存在を示しその漸近挙動を決定した。更に、熱対流と非圧縮性粘性流との混合方程式系に対しては、流体の占める領域の境界が時間とともに変動する、非柱状領域における初期値境界値問題、周期問題の強解の存在と一意性が、柱状領域における熱伝導と粘性流に対してそれぞれ知られている結果を含む極めて一般的な枠組みで解決された。しかしながら、このように多くの成果があげられた一方、最終目標であったシュレディンガー混合型方程式系の多くを含む統一的理論を構築するという課題については、いくつかの有力な手がかりは得られたものの、達成するには至らなかった。今後の課題としたい。

  • 非線型放物型方程式系及び楕円型方程式系にたいする解集合の研究

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(一般研究(C))

    Project Year :

    1993
     
     
     

     View Summary

    非線形放物型方程式系と関連する楕円型方程式について研究を進めてきたなかで、今年度中に成果が得られた研究テーマは、[1]フイードバック効果をもつ反応拡散方程式系についての解集合の構造、[2]数理生態学にあらわれる準線系放物型方程式系について、の二つである。[1]の研究においては、数値実験の結果から、フイードバックのメカニズムは反応拡散方程式系の解にたいして振動現象をもたらすことが観測されている。ノイマン境界条件の下で拡散方程式系の解が、振動しながらも終局的には定常解に収束するのはどんな場合かを解析した。その結果、定常解が大域的に漸近安定となる条件、および、局所的に漸近安定となる条件をわかりやすい形で導くことができた。さらに適当な定数をパラメーターとみなして変化させるとき、定常解が不安定となる状況が起きる。このときには定常解から周期解が分岐することが証明され、分岐した周期解の軌道安定性を調べることができた。周期解が必ずしも軌道安定になるとは限らないこともわかり、将来さらに詳しい解析を進める必要がある。また、[1]の方程式系をディリクレ境界条件の下で解析すると、解の漸近挙動を調べる際にノイマンのときにはなかった難しさがあらわれる。定常問題の解集合の構造が単純ではない点である。対応する楕円型方程式系の正値解を見つけることが重要であり、不動点定理や写像度の理論を使って解の存在を示すことができた。ただし、解集合の情報は完全ではなく、今後も研究を続けなければならない。[2]は二種類の生物が競合している状況をモデルとしていて、二つの方程式の間で拡散効果が相互作用をしている。このような数学的難点を克服して、かなり自然な条件のもとで有界な大域界を校正することができた。今後は、この解の時間無限大での漸近挙動を調べる予定である。

  • 場の理論の数学

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(一般研究(C))

    Project Year :

    1991
     
     
     

     View Summary

    2次元共形場理論の出発点は,複素解析的にouカーstateとin stateを記述することにある。4次元共形場理論においても複素解析的手法を適用し,粒子場と反粒子場とが,各々複素平面のはりあわせとして関係していることを示し,共形場理論への出発点を与えることができた。
    S^4上のディラック作用素と赤道S^3上のハミルトニアンを複素ベクトル場を成分とする行列で具体的に表示することにより,S^4上の調和スピノ-ルの特徴づけを与え,またS^3上のハミルトニアンの固有値および完全固有スピノ-ル系を求めた。一方S^3へのSU(2,D)の左及び右からの作用より得られる最高ウエイメト表現に附随した球函数を2次元複素座標により表示した。これは初等的な結果であるが新しい。この球函数の族が上記固有スピノ-ルを系統的に与えることがわかる。この固有函数系に自然に附随してS^3上の無限次元グラスマン多様体が構成される。このグラスマン多様体の各元はS^4の北半球,南半球のスピノ-ルに境界系件を与えていると考えられる(witten's idea)が,このtransmission問題を考え解訳した。とくにディラック作堂素の指数定理の直接計算による証明が得られた。さらに進んでフェルミオン・フォック空間を導入した。ヴィラソロ代数の4次元の類似を探することが今後の問題となる。(以上 郡)
    量子群の研究に関しいは,A_< nー1>型のヘッケ代数により量子群Vg(gl(n+1))の表現の指標を訳定する研究が行なわれた(上野)
    この他,函数解析の基本的定理に関して,Whitteyーschwartzによるdistribntionの特徴づけの定理の精密化が得られた(垣田)

  • 極の存在についての研究

    科学研究費助成事業(東海大学)  科学研究費助成事業(一般研究(C))

    Project Year :

    1989
     
     
     

     View Summary

    今年度における研究目標はかなり達成できた。特に頂点(回転の中心となる点)をもつ回転面に関しては予想より非常に良い結果を得た。まず基本的性質として、頂点をもつ回転面上の極の作る集合は、頂点を中心とするある半径の閉球をなすことがわかった。次に回転面上の極が2個以上あるための同値条件を、関数L(t)だけの簡単な性質だけで表すことができた。ただし、L(t)は、頂点を中心とする半径tの円の長さを表す。マンゴルトの回転面と呼ばれる回転面を定義し、この回転面上の最小軌跡を完全に決定することに成功した。いくつかの興味深い例を作ることにも成功した。非連結な最小軌跡をもつ回転面、ある点でガウス曲率が正であるが、共役点を持たない回転面の例、極を沢山もつマンゴルトの回転面の例等を見つけた。またマンゴルトの回転面上において、極の作る閉球の半径は、L(t)だけで表せるある幾何学的な等式を満たすことも証明した。最後に主定理を述べるのに必要な定義をしておく。Mを回転面、PをMの頂点とする。各q(Mの点でPでない点)に対して、μ_qをPからでて、qを通る測地線、またt_qをqからでてpを通る測地線とする。ただし、各測地線のパラメ-タ-はその孤長にとるものとする。dをM上のリ-マンの距離関数とするとき、次の定理を証明した。
    主定理、Mをマンゴルトの回転面とする。各xに対して、xの最小軌跡C_xは空集合であるか、C_x=u_x〔d(p,x)∞〕である。ただし、xはt_xに沿うxの第一共役点を表す。

  • Research on the structure and stability of the dynamical system describing phase transition phenomena

     View Summary

    The subjects of this project are the following :(1)Modelings of phase transition phenomena with their mathematical theory(2)Formulations of the related optimal control problems and numerical simulations(3)Return of the research results to the school educationConcerning (1), on the basis of the fundamental laws of the thermo-mechanics, we investigated the structure (phase change, component separation, damage evolution, ordering of atoms) of materials from the view-point of the theory of dymanical systems. Especially, during the last two years (2003-2004) of the project, we treated a class of models for irreversible phase change phenomena, taking account of the process of damage, and evolved its mathematical theory. In our research the subdifferential theory, which have been accumulated for these 15 years, worked very well and we had a big progress more than we expected. Concerning (2), proposing some formulations of optimal control problems in which control parameters are described by a class of hysteresis functions, we finished almost the theoretical part of the problems and tried partially their numerical tests. It was pointed out that there are still some questions which should be improved. Many papers treating subjects (1)and (2)were published and we organized two international conferences during this research project.As far as (3)is concerned, many practices were reported in the meetings "Mathematical analysis of phase transitions and their related mathematics education" which we organized every year. We paid our attention to time-dependent phenomena noticed easily in our daily lives, verifying very carefully their value-added educational aspects as teaching materials of mathematics or sciences for the secondary school. We expect that this research enables to provide new teaching materials by which students can perceive usefulness of mathematics

  • 対称臨界性原理とその非線形偏微分方程式への応用

     View Summary

    対称臨界性原理とは、「Banach空間X上で定義された汎関数Jに対し、ある群Gの作用に関して不変な部分空間X_G上でのJの臨界点が、X全体でのJの臨界点を与える」という原理である。この原理は、Jの汎関数(フレッシェ)微分を、劣微分作用素を含むかなり一般的な多価作用素Aに置き換えても成立することが、本研究により示されている。さらに、作用素Aが、必ずしも変分構造を有していない場合に対して拡張することが可能(AがG-共変であれば十分)であり、時間発展を伴う発展方程式に対して有用であろうことが期待されていた。(1)非線形放物型方程式、波動方程式、シュレンディンガー方程式等への応用考えるとき、時間に関する微分作用素d/dtがどのような空間でG-共変となるかを調べることは重要であるが、今回L2(0,T;X),X=L2(Ω),L2(Ω)xL2(Ω),H10(Ω)xL2(Ω),などでそのG-共変性(G=O(N))が確かめられた。これらの空間は、上記の諸方程式を抽象発展方程式に帰着させるときに現れる基本的な空間であり、これは、今後の発展方程式への応用研究において重要な知見である。(2)放物型方程式の時間大域解の漸近挙動を解析する際、コンパクト性は強力なな道具を提供する。一般の非有界領域では欠如しているソボレフの埋蔵定理にかかわるコンパクト性が、回転対称性を有する関数からなる部分空間においては、恢復するという事実に基づき、ある種の回転対称性を有する非有界領域におけp-Laplace作用素と爆発項を含む非線形放物型方程式の対称大域解のW1,p-有界性が確かめられた

  • Studies on dynamical systems of nonlinear phenomena with energy dissipation and the theory of stability

     View Summary

    We tried to construct a new mathematical theory for clarifying the mechanisms of nonlinear and complex phenomena in the real world and to make use of it to handle some concrete problems arising in the material and life science. In fact, our new mathematical theory provided an effective approach for some open questions. This is one of the most important achievements in this research, and the so-called "Life Mathematics" has been evolved in the same framework

  • RESEARCH ON THE THEORY OF VISCOSITY SOLUTIONS OF DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

     View Summary

    On the theme of researching the theory of viscosity solutions of differential equations and its applications, we investigated viscosity solutions of boundary value problems, weak KAM theory, regularity of viscosity solutions, optimizations problems, several kinds of asymptotic problems in differential equations, curvature flows and motions of phase boundaries, mass transportation problems, problems in engineering and economics. Based on the investigations done before, we have succeeded to obtain many, new observations on each of subjects listed above. Our contributions to research on Aubry sets in weak KAM theory and its application to asymptotic problems are significant

▼display all

Specific Research

  • 非線形放物型方程式に軸足を置いた非線形偏微分方程式の総合的研究

    2016   内田 俊

     View Summary

    The followingresults are achieved under this grant. (1) Study on theapplications of “L-infinity Energy Method” to nonlinear partial differentialequations: &nbsp;&nbsp; We applied L-infinity Energy Method to the systemof parabolic equations which describes a diffusion-convection prey-predatormodel which takes into account of the hysteresis effects. Because of the strongnonlinearity of this system, we needed to improve some tools to establish apriori estimates for the L-infinity norm of solutions, by which we could ameliorateprevious studies.(2) Studyon complex Ginzburg-Landau equations (CGLE): &nbsp; (i) For the non-dissipative system in boundeddomains, we proved the existence and the uniqueness of time-local solutions forCGLE in H^1-space.&nbsp; (ii) We analyzed the finite-time blow-up ofsolutions of CGLE. The previous studies dealt with the case where the energy ofthe initial data is negative in the whole domain. Wedeveloped a new method to treat the case where the energy of the initial datais positive in general domains.(3) Studyon the mathematical analysis for the&nbsp;&nbsp; mitochondrial&nbsp;&nbsp;swelling&nbsp;&nbsp; model:&nbsp;&nbsp;&nbsp;&nbsp; We analyzed this model with Robin-typeboundary conditions, which describes well the real situation of mitochondria incells. We showed the well posedness of the system as well as the asymptoticbehavior of solutions.

  • 非線形発展方程式とその関連分野の総合的研究

    2013  

     View Summary

    研究目的にかかげた目標に関連する次の幾つかの興味ある成果が得られた.(1) 海洋学で扱われているモデルの一つである,流体(水)の速度及び温度と流体中の溶質(塩)の濃度の振舞いを記述する二重拡散方程式系(非線形項を持つBrinkman-Forchheimer 方程式(ストークス方程式の変形方程式)と移流項をもつ放物型方程式との混合方程式系)の初期値境界値問題に対して,従来の有界領域に於ける一意可解性が(非有界)一般領域においても成立することが示された.さらに,従来の結果では空間次元 N が3以下という仮定が必要であったが,N が4以下という条件に緩和された. また,温度と溶質の腕の初期値に対する仮定も弱められた.従来の証明法はシャウダー型の不動点定理によるものであったが,今回の改良は,バナッハの縮少写像の原理の応用と劣微分作用素に対する非単調摂動理論の精密化によって可能になった.(大谷・内田俊(D1))(2) 非斉次ディリクレ型境界条件下の,強い消散性非線形項を持つFast Diffusion 方程式に対して,主要項の非線形性が消散項のそれより強い場合には,解が有限時間で定常解に接するという興味深い現象(Dead Core 現象)が現れることが,空間1次元の場合に知られていた.主要項と消散項の非線形性の強さが逆転する場合にも同様の現象が起こるかどうかは未解決の問題として残されていが,これを否定的に解決した.すなわち,解は有限時間では定常解に接することはなく,無限時間をかけて指数関数的に定常解に漸近することが,一般の空間次元に対して示された.(大谷・桑垣 樹(B4))(3) 複素Ginzburg-Landau 方程式を,劣微分作用素に対する単調及び非単調摂動理論により解析する手法を開発した.これにより,解の平滑化現象の導出が簡便になり,従来知られていた一意的大域解の存在のための十分条件を大幅に緩めることに成功した.(大谷・清水 翔司(B4))

  • 非線形放物型方程式の解の漸近挙動

    2005   北田 韶彦, 田中 和永, 松浦 啓

     View Summary

    (i) 優臨界指数増大度の爆発項を有する半線形熱方程式の解の漸近挙動に関する研究は、最近ようやくその端緒についた重要な研究課題である。 領域が球の外部領域の場合の球対称解に対して、安定集合(ここから出発した解は大域解)と爆発集合(ここから出発した解は有限時刻で爆発)が構成された。 さらに、すべての球対称時間大域解は有界となり、その L∞ノルムは、初期値の L∞ノルムにのみ依存する定数でおさえられることが示された。この事実は、劣臨界指数増大度の非線形項に対しては良く知られていたが、優臨界指数に対しては、コンパクト性の欠如のため、全く手がつけられていなかったが、ある特別な変数変換を介して、球対称関数に対してはコンパクト性が恢復するという事実によってこの困難を解決した。(ii) p-Laplace 作用素を主要項に持つ準線形放物型方程式に対する初期値境界値問題に対して全ての解軌道を引き付ける「大域アトラクター」が、L2-空間で構成された。 さらに、大域アトラクターが無限次元となるための十分条件が与えられた。無限次元の大域アトラクターを持つ例は、半線形放物型方程式では全く知られておらず、このような新奇な現象が発見されたことは、極めて重要であり、準線形放物型方程式に特有のものと思われる。また、ある種の特殊な構造を有する準線形放物型方程式に対して、あるクラスに属する初期値から出発する解軌道を、時間に関して指数的に引き寄せる、有限フラクタル次元を持つ「指数アトラクター」の存在を示唆する予備的な成果が得られた。

  • 対称臨界性原理とその非線形偏微分方程式への応用

    2004   北田 韶彦, 田中 和永, 柳谷 晃, 石渡 通徳, 小林 純, 赤木 剛朗

     View Summary

    対称臨界性原理とは、「Banach 空間 X 上で定義された汎関数 J に対し、ある群 G の作用に関して不変な部分空間 X_G 上での J の臨界点が、X 全体での J の臨界点を与える」という原理である。この原理は、J の汎関数(フレッシェ)微分を、劣微分作用素を含むかなり一般的な多価作用素 A に置き換えても成立することが、本研究により示された。すなわち、 (a) 対称性を表現する群 G の作用が等距離的である、 または (b) X 及びその双対空間 X^* がともに回帰的かつ狭義凸である, が成り立てば、「群 G の作用に関して不変な部分空間 X_G 上での A に付随する(生成する)X 上の汎関数 J の臨界点が X での臨界点を与える」ことが示された。この原理の応用として、ある種の回転対称性を有する非有界領域におけるp-Laplacian を含む変分不等式の解の構成がなされた。これは、 Palais による 古典的な``Principle of Symmetric Criticalilty'' の拡張を与えているだけではなく、作用素 A が、必ずしも変分構造を有していなくてもよいversion に拡張することが可能( A が G-共変であれば十分)であり、楕円型方程式のみならず、時間発展を伴う発展方程式に対して有用であろうことが期待されていた。一方、一般の非有界領域では、ソボレフの埋蔵定理にかかわるコンパクト性が欠如しているが、回転対称性を有する関数からなる部分空間においては、これが恢復するために、この部分空間における強非線形発展方程式の可解性がより容易に示される。この対称性を有する空間で構成された解が、真の解であることが、上記の原理から導かれるのである。実際、劣微分作用素の差で支配される抽象放物型方程式に対して、この原理を拡張し、ある種の回転対称性を有する非有界領域におけるp-Laplace 作用素と爆発項を含む非線形放物型方程式の解の存在証明にこれを応用した。 今後このより広範な方程式に対して有効な、より一般化された原理の確立とその応用が充分期待される。

  • 非線形発展方程式及び非線形楕円型方程式の研究

    2002   北田 韶彦, 田中 和永, 柳谷 晃

     View Summary

    研究目的にかかげた目標に関して, 以下のような幾つかの興味ある成果が得られた. 楕円型方程式 : (i) -Δ(|Δu|p-2 Δu) =|u|q-2u x∈Ω, u(x) =Δu(x) = 0 x ∈∂Ω の非自明解が p = 2(m+1)/(2m+1), m ∈ N, q = 2k, k ∈N の時かつこの時に限ってΩの閉包上で解析的になることが示された. (さらに空間次元 d が 1 であるときには, 収束半径が Ω の閉包上で一様にとれる。) 2 階の方程式 -div (|∇u|p-2 ∇u) = |u|q-2 u に対しては, 既に同様の結果が空間1次元の場合に対してのみ知られているが, 4階の場合の方が事情がより簡単である点が興味深い. (ii)-div (|∇u|p-2 ∇u) = |u|q-2 u x∈Bc = { x∈Rd;∥x∥> C }, u(x) = 0 x∈∂Bc が少なくとも一つの正値解を有することは, 我々の研究で既に示されていが,Ljusternik-Schnirelman 理論と組合せることによって「少なくとも可算無限個の非自明解を許す」ことが示された. これは, ある種の変換を介してこの問題が帰着される, 円環領域における境界上に特異性を有する楕円型方程式を解析することによってなされるが, この際 Palais-Smale 条件などの検証が境界上の特異性のために困難であった. この点を克服した点に意義がある.放物型方程式: (i)劣微分によって支配される回帰的 Banach 空間Xにおける発展方程式 du(t)/dt +∂φ(u(t)) -∂ψ(u(t)) ∋f(t) に対する 初期値問題の可解性, 正則性 が示された. この枠組は, Galerkin 法による弱解の従来の構成法よりも, より良い正則性を持つ解が自然に構成されるという利点を有する. また 大谷 による Hilbert 空間における劣微分作用素に対する非単調摂動理論を Banach 空間へ拡張する際の第一歩としての意味からも意義がある. (ii) 内部構造として, 回転磁場を有する非圧縮性流体の流速, 回転磁場, 温度が満たす micro-polar fluid 方程式に対する初期値境界値問題の解の存在、正則性及び一意性が, 大谷 による Hilbert 空間における劣微分作用素に対する非単調摂動理論を応用することによって示された. これにより, 劣微分作用素に対する非単調摂動論の有用性が再確認された.

  • 非線形楕円形方程式と発展方程式の研究

    1998  

     View Summary

     非有界領域における臨界ソボレフ指数を越える非線形性を有する非線形楕円形方程式に対して、以下の興味深い結果がえられた。方程式 (E) -△u=|u|q-2u x∈Ω、 u(x)=x∈∂Ωに対して、次の定理を得た。(1)「Ω=RN\BR、・BR={x∈RN;|x|≦R}、2*<q<∞(2*は、ソボレフ型埋蔵H10(Ω)⊂Lq(Ω)の臨界指数)とするとき、(E)はH1O(Ω)⊂Lq(Ω)に属する(球対称)非自明解をもつ(大谷・橋本哲)・」1<q≦2*の場合には、非自明解が存在しないことが既に知られており、(大谷・橋本貴)、有界領域に対する既知の結果(1<q<2*のき存在、2*≦q<∞のとき非存在>との双対性から、解の存在が予想されていたが、この長年の未解決問題が肯定的に解決された意義は大きい。 また今まで、非有界領域における臨界ソボレフ指数を越える非線形性を有する非線形楕円形方程式に対する変分的解法が皆無であったが、この定理を証明するために、「適当な変換によって、外部領域における問題を、円環領域における境界に特異性を有する楕円形方程式に変換し、これを変分的な方法で解くことに帰着する」という全く新しい技法が開発されたことは極めて意義深い。(2) Ω=Ωd×RN-d、Ωdをd-次元円環領域とする。非自明解の存在に関して、今まで解明されていなかった場合2*<q≦Nd=2(N-d+1)/N-d-1が解明された:(ⅰ)2*<q≦Ndの場合は、非自明解が存在し、(ⅱ)q=Ndの場合は、解が存在しない。即ち、既存の結果とあわせると「(ⅰ)1<q≦Ndのとき存在(ⅱ)Nd≦qのとき非存在」となり、この問題に対する完全な解答が得られたことになる。この事実から、「領域のd次元対称性は、実効的次元を(d-1)次元だけ減ずる効果をもたらす」ことが結論づけられた。

  • 非線形楕円型方程式研究における新技法の開発

    1997  

     View Summary

    臨界ソボレフ指数の非線形性を有する、楕円型方程式に関していくつかの興味深い結果が得られた。方程式(E) -Δu=λu+│u│q-2u x∈Ω, u(x)=0 x∈∂Ωに対して、次の定理が成り立つ。(1)Ω=Ωd&#215; RN-d(RNの非有界柱状領域)、q=2*(2*は、ソボレフ型埋蔵H10 (Ω)⊂Lq(Ω)の臨界指数)、d≧1,N≧4とするとき、任意のλ∈(0,λ1)、λ1=infν∈H10(Ω)∥∇u∥2L2/∥u∥2L20に対し、(E)は非自明解をもつ(大谷・石渡)。(この結果は、有界領域に対してよく知られているBrezis-Nirenbergの結果の非有界柱状領域への拡張を与えている。また、λ≦0の場合には、(E)は非自明界を持たないことが知られている(大谷・橋本)。)(2)Ω=Ωd&#215; RN-d,Ωdをd-次元円環領域とするとき、q>Nd=2(N-d+1)/(N-d+1-2)ならば、(E)は非自明界(適当なクラスに属する弱解)を持たない(大谷・橋本)。(2<q≦2*に対しては、(E)は非自明解をゆるすことが知られており(大谷・石渡)、2*<q≦Ndの場合を解決することが、今後の課題となろう。) 次に、当面の目標であった、劣微分作用素に対しての写像度を定義することに成功した(大谷・小林)。これは、従来の理論の欠点(例えば「deg(f,G,p)≠0 であってもf(x)=pの解がGに存在するとは限らない」など)を取り除いたものであり、Leray-Schauder型の写像度の理論に沿った拡張になっている。この意味で、従来の理論を大きく越える枠組みを提供するものであり、非線形偏微分方程式への応用が期待される。この為には、摂動理論の確立が今後の最重要課題となろう。研究成果の発表1997 Periodic problems for heat convection equations in noncylindrical domains, Funkcialaj Ekvacioj 40 19-391997 Nonexistence of weak solutions of nonlinear elliptic equations in exterior domains, Houston J. Math. 23, 267-2901997 Nonexistence of positive solutions for some quasilinear elliptic equations in striplike domains, Discrete and Continuous Dynamical Systems 3, 565-578

▼display all

Overseas Activities

  • 非線形発展方程式論とその応用

    2017.04
    -
    2018.03

    フランス共和国   パリ大学・J.L.Lions 研究所

    ドイツ共和国   ヘルムホルツセンター(ミュンヘン)

    ポルトガル   アヴェイロ大学