2024/05/20 更新

写真a

ホウ シガ
鮑 思雅
所属
理工学術院 基幹理工学部
職名
講師(任期付)

経歴

  • 2020年04月
    -
    継続中

    早稲田大学   理工学術院   講師

学歴

  • 2017年04月
    -
    2020年03月

    早稲田大学   大学院基幹理工学研究科 博士後期課程  

  • 2015年09月
    -
    2017年03月

    早稲田大学   大学院基幹理工学研究科 修士課程  

  • 2011年09月
    -
    2015年09月

    早稲田大学   基幹理工学部  

委員歴

  • 2023年06月
    -
    継続中

    情報処理学会  論文誌ジャーナル/JIP編集委員会委員

  • 2022年04月
    -
    継続中

    情報処理学会  高度交通システムとスマートコミュニティ研究会

所属学協会

  •  
     
     

    情報処理学会

  •  
     
     

    電子情報通信学会

  •  
     
     

    IEEE

研究分野

  • 高性能計算 / データベース

研究キーワード

  • 量子計算

  • 地理空間情報処理

  • テキストマイニング

受賞

  • 優秀論文賞

    2023年11月   DICOMO 2023   ACOによる時間変化に対応した旅行計画最適化手法  

    受賞者: 佐伯 越志, 鮑 思雅, 高山 敏典, 戸川 望

  • Best Student Opponent

    2020年01月   IEEE ICSC 2020  

  • 海外渡航旅費援助

    2017年09月   電気通信普及財団  

 

論文

  • BERT-Based Prediction Model of Management Sales Forecast Error Using Japanese Firms' Earnings Meeting Transcripts

    Siya Bao, Yiqun Jin

    2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)    2024年01月

    DOI

  • Time-Dependent Multi-Objective Trip Planning by Ant Colony Optimization with Route API.

    Etsushi Saeki, Siya Bao, Toshinori Takayama, Nozomu Togawa

    ICCE     1 - 2  2024年

    DOI

    Scopus

  • Carrying-Mode-Free Stair Ascent and Descent Estimation using Smartphones.

    Dai Kajimoto, Etsushi Saeki, Siya Bao, Nozomu Togawa

    ICCE     1 - 6  2024年

    DOI

  • Ising-Machine-Based Solver for Constrained Graph Coloring Problems.

    Soma Kawakami, Yosuke Mukasa, Siya Bao, Dema Ba, Junya Arai, Satoshi Yagi, Junji Teramoto, Nozomu Togawa

    IEICE Trans. Fundam. Electron. Commun. Comput. Sci.   107 ( 1 ) 38 - 51  2024年01月

    DOI

  • Multi-Day Intermodal Travel Planning for Urban Cities Using Ising Machines

    Siya Bao, Nozomu Togawa

    IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC     54 - 60  2023年

     概要を見る

    The multi-day intermodal travel planning problem (MITPP) is an optimization problem (OP) and it generates the optimal sequences of point-of-interests (POIs) and hotels while searching for the most suitable transport modes between POIs and hotels. Conventional methods and solvers using von Neumann computers provide good approximate solutions to the OPs, but the computation time grows exponentially dealing with large-scale or complex OPs. Meanwhile, Ising machines or quantum annealing machines are non-von Neumann computers that are designed to solve complex OPs. In this paper, we focus on solving the MITPP by a two-phase Ising-based method. The first POI clustering phase aims at generating POIs clusters for sightseeing days and the second POI routing phase generates travel routes for each day with the optimal transport modes. Practical factors such as POI satisfaction, POI duration, hotel fee, and transportation fee are included in the MITPP. We map these elements onto quadratic unconstrained binary optimization (QUBO) models. For evaluation, we use a real-world dataset in Sapporo, Japan. Empirical results confirm that the proposed method can effectively solve the MITPP both in terms of solution quality and execution time and outperforms a conventional solver, a conventional method, and the latest Ising-based method.

    DOI

    Scopus

  • An Ising-Machine-Based Solver of Vehicle Routing Problem With Balanced Pick-Up

    Siya Bao, Masashi Tawada, Shu Tanaka, Nozomu Togawa

    IEEE Transactions on Consumer Electronics    2023年

     概要を見る

    Vehicle routing applications are ubiquitous in the field of pick-up and delivery service. We focus on the vehicle routing problem with balanced pick-up called VRPBP which originates from the package pick-up service. The aim of the problem is not only to efficiently explore the shortest travel route but also to balance loads between depots and vehicles. These problems can be regarded as optimization problems, and recent developments in Ising machines, including quantum annealing machines, bring us a new opportunity to solve complex real-world optimization problems. In this paper, a two-phase method and a three-phase method using Ising machines are proposed for solving the VRPBP. As the applicability of current Ising machines is limited due to the small size of Ising spins and connectivities, we partition the complex problem into two or three sub-problems, and the key elements of each sub-problem are mapped onto quadratic unconstrained binary optimization (QUBO) models to fit in the structure of the Ising machines. We first compared the performances of the Ising machine on the standard TSP and CVRP datasets with a conventional state-of-the-art solver and three conventional methods. Then, we evaluated the performances of the proposed methods compared with five conventional method for solving the VRPBP. The results confirm the effectiveness of the two proposed methods in solving vehicle-routing-related optimization problems.

    DOI

    Scopus

  • Trip Planning Based on subQUBO Annealing.

    Tatsuya Noguchi, Keisuke Fukada, Siya Bao, Nozomu Togawa

    IEEE Access   11   100383 - 100395  2023年  [査読有り]

    DOI

    Scopus

  • A Constrained Graph Coloring Solver Based on Ising Machines.

    Soma Kawakami, Yosuke Mukasa, Siya Bao, Dema Ba, Junya Arai, Satoshi Yagi, Junji Teramoto, Nozomu Togawa

    ICCE     1 - 6  2023年  [査読有り]

    DOI

    Scopus

  • ML-Based Trading Strategy for Short-Term Price Reactions on Earnings Announcement Reports

    Yiqun Jin, Siya Bao

    Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022     6682 - 6683  2022年  [査読有り]

     概要を見る

    An earnings announcement report (EAR) contains the latest information about a company's financial situation and operating performance. Short-term stock price reacts strongly to such information. In this paper, to gain investment return from the short-term price reaction to EARs, we use 28 important variables from EARs and propose an ML-based trading strategy (MLTS) with random forest (RF). Results show that our strategy achieves the highest final investment return of 178.1%.

    DOI

    Scopus

  • Multi-Objective Trip Planning Based on Ant Colony Optimization Utilizing Trip Records.

    Etsushi Saeki, Siya Bao, Toshinori Takayama, Nozomu Togawa

    IEEE Access   10   127825 - 127844  2022年  [査読有り]

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • An Approach to the Vehicle Routing Problem with Balanced Pick-up Using Ising Machines

    Siya Bao, Masashi Tawada, Shu Tanaka, Nozomu Togawa

    2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)    2021年04月  [査読有り]

    DOI

  • Multi-day Travel Planning Using Ising Machines for Real-world Applications.

    Siya Bao, Masashi Tawada, Shu Tanaka, Nozomu Togawa

    24th IEEE International Intelligent Transportation Systems Conference(ITSC)     3704 - 3709  2021年  [査読有り]

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • Document-level sentiment classification in japanese by stem-based segmentation with category and data-source information

    Siya Bao, Nozomu Togawa

    Proceedings - 14th IEEE International Conference on Semantic Computing, ICSC 2020     311 - 314  2020年02月  [査読有り]

     概要を見る

    © 2020 IEEE. Existing studies focus on text information while ignoring category and data source information, both of which are verified to be important in interpreting sentiments in travel comments in this paper. Furthermore, the unique linguistic characteristics of Japanese cause difficulty in applying the conventional token-based word segmentation methods to Japanese comments directly. In this paper, we propose a method of stem-based segmentation based on Japanese linguistic characteristics and incorporate it with category and data source information into a hierarchical network model for document-level sentiment classification. Empirical results of our proposed model outperform existing models on a real-world dataset.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • A travel decision support algorithm: Landmark activity extraction from japanese travel comments

    Siya Bao, Masao Yanagisawa, Nozomu Togawa

    Studies in Computational Intelligence   849   109 - 123  2020年  [査読有り]

     概要を見る

    © Springer Nature Switzerland AG 2020. To help people smoothly and efficiently make travel decisions, we utilize the advantages of travel comments posted by thousands of other travelers. In this paper, we analyze the feasibility of exploring landmark activity queries and representative examples from Japanese travel comments. Contributions in this paper include a framework for extracting activity concerned keywords and queries, quantifying the relationship between landmark activities and comment contents. An evaluation of activity-example extraction is conducted in two case studies through 18,939 travel comments.

    DOI

    Scopus

  • Landmark Seasonal Travel Distribution and Activity Prediction Based on Language-specific Analysis

    Siya Bao, Masao Yanagisawa, Nozomu Togawa

    Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018     3628 - 3637  2019年01月  [査読有り]

     概要を見る

    © 2018 IEEE. Online media communities have globally spanned and have increasingly accelerated the development of intelligent travel recommendation systems in both academic and industrial fields. However, there is a bottleneck that differences in users' seasonal travel distributions (when to visit) in various language groups are ignored. This paper proposes a seasonal activity prediction algorithm based on user comments over the period of 2012 to 2017 in different language groups. We take the advantage of online user comments which provide visiting time for each landmark and detailed activity description. With the accumulation of 417,787 user comments on TripAdvisor for 300 landmarks in three big cities, we analyze the language-specific differences in travel distributions. After that, prediction of future travel distribution for each language group is generated. Then potential peak and off seasons of each landmark are distinguished and representative seasonal activities are extracted through comment contents for peak and off seasons, respectively. Experimental results in the three cities show that the proposed algorithm is more accurate in terms of peak season detection and seasonal activity prediction than previous studies.

    DOI

    Scopus

  • Personalized Landmark Recommendation for Language-Specific Users by Open Data Mining

    Siya Bao, Masao Yanagisawa, Nozomu Togawa

    Studies in Computational Intelligence   791   107 - 121  2019年  [査読有り]

     概要を見る

    © 2019, Springer Nature Switzerland AG. This paper proposes a personalized landmark recommendation algorithm aiming at exploring new sights into the determinants of landmark satisfaction prediction. We gather 1,219,048 user-generated comments in Tokyo, Shanghai and New York from four travel websites. We find that users have diverse satisfaction on landmarks those findings, we propose an effective algorithm for personalize landmark satisfaction prediction. Our algorithm provides the top-6 landmarks with the highest satisfaction to users for a one-day trip plan our proposed algorithm has better performances than previous studies from the viewpoints of landmark recommendation and landmark satisfaction prediction.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Personalized landmark recommendation algorithm based on language-specific satisfaction prediction using heterogeneous open data sources

    Siya Bao, Masao Yanagisawa, Nozomu Togawa

    Proceedings - 2018 10th International Conference on Computational Intelligence and Communication Networks, CICN 2018     70 - 76  2018年08月  [査読有り]

     概要を見る

    © 2018 IEEE. This paper proposes a personalized landmark recommendation algorithm based on the prediction of users' satisfaction on landmarks. We have accumulated 270,239 user-generated comments from travel websites of Ctrip, Jaran and TripAdvisor for 196 landmarks in Tokyo, Japan. We find that users do have different satisfaction on landmarks depending on their commonly used languages and travel websites. Then we establish a database for landmarks with abundant and accurate landmark type and landmark satisfaction information. Finally, we propose an effective personalized landmark satisfaction prediction algorithm based on users' landmark type, language and travel website preferences. After that, landmarks with the top-6 highest satisfaction are provided to the user for a one-day visit plan in Tokyo. Experimental results demonstrate that the proposed algorithm can recommend landmarks that fit the user's preferences and our algorithm also successfully predicts the user's landmark satisfaction with a low error rate less than 7%, which is superior to other previous studies.

    DOI

    Scopus

  • Road-illuminance level inference across road networks based on Bayesian analysis

    Siya Bao, Masao Yanagisawa, Nozomu Togawa

    2018 IEEE International Conference on Consumer Electronics, ICCE 2018   2018-January   1 - 6  2018年03月  [査読有り]

     概要を見る

    © 2018 IEEE. This paper proposes a road-illuminance level inference method based on the naive Bayesian analysis. We investigate quantities and types of road lights and landmarks with a large set of roads in real environments and reorganize them into two safety classes, safe or unsafe, with seven road attributes. Then we carry out data learning using three types of datasets according to different groups of the road attributes. Experimental results demonstrate that the proposed method successfully classifies a set of roads with seven attributes into safe ones and unsafe ones with the accuracy of more than 85%, which is superior to other machine-learning based methods and a manual-based method.

    DOI

    Scopus

  • Personalized one-day travel with multi-nearby-landmark recommendation

    Siya Bao, Masao Yanagisawa, Nozomu Togawa

    IEEE International Conference on Consumer Electronics - Berlin, ICCE-Berlin   2017-September   239 - 242  2017年12月  [査読有り]

     概要を見る

    © 2017 IEEE. Travel route recommendation can strongly influence users' satisfaction and the success of touristic businesses. This paper proposes a personalized travel recommendation algorithm with time planning. We use landmark categorization and region clustering to obtain effective elements. Then we build a travel map to generate all possible travel routes. Our proposed algorithm has higher precision in landmark recommendation and time planning than thoes in previous algorithms.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • A safe and comprehensive route finding algorithm for pedestrians based on lighting and landmark conditions

    Siya Bao, Tomoyuki Nitta, Masao Yanagisawa, Nozomu Togawa

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   E100A ( 11 ) 2439 - 2450  2017年11月  [査読有り]

     概要を見る

    Copyright © 2017 The Institute of Electronics, Information and Communication Engineers. In this paper, we propose a safe and comprehensive route finding algorithm for pedestrians based on lighting and landmark conditions. Safety and comprehensiveness can be predicted by the five possible indicators: (1) lighting conditions, (2) landmark visibility, (3) landmark effectiveness, (4) turning counts along a route, and (5) road widths. We first investigate impacts of these five indicators on pedestrians' perceptions on safety and comprehensiveness during route findings. After that, a route finding algorithm is proposed for pedestrians. In the algorithm, we design the score based on the indicators (1), (2), (3), and (5) above and also introduce a turning count reduction strategy for the indicator (4). Thus we find out a safe and comprehensive route through them. In particular, we design daytime score and nighttime score differently and find out an appropriate route depending on the time periods. Experimental simulation results demonstrate that the proposed algorithm obtains higher scores compared to several existing algorithms. We also demonstrate that the proposed algorithm is able to find out safe and comprehensive routes for pedestrians in real environments in accordance with questionnaire results.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • A safe and comprehensive route finding method for pedestrian based on lighting and landmark

    Siya Bao, Tomoyuki Nitta, Kazuaki Ishikawa, Masao Yanagisawa, Nozomu Togawa

    2016 IEEE 5th Global Conference on Consumer Electronics, GCCE 2016    2016年12月  [査読有り]

     概要を見る

    © 2016 IEEE. This paper proposes a safe and comprehensive route finding method for pedestrians. We evaluate five factors that do relieve pedestrians' fear of darkness. Based upon the evaluation, we propose a comprehensive route finding method by taking road width and reduction on turning points into consideration. The experimental results on real outdoor environments under different lighting situations confirm that the proposed method can obtain safety and comprehensive routes for pedestrians.

    DOI

    Scopus

    8
    被引用数
    (Scopus)
  • A landmark-based route recommendation method for pedestrian walking strategies

    Siya Bao, Tomoyuki Nitta, Daisuke Shindou, Masao Yanagisawa, Nozomu Togawa

    2015 IEEE 4th Global Conference on Consumer Electronics, GCCE 2015     672 - 673  2016年02月  [査読有り]

     概要を見る

    © 2015 IEEE. This paper proposes a landmark-based route recommendation method for enjoyable walking atmosphere strategies by accumulating and analyzing geographical information. We utilize landmark categorization and region clustering to obtain effective elements. Experimental results demonstrate that our proposed method improves walking environment quality and confirm that it is applicable in both urban and rural areas.

    DOI

    Scopus

    5
    被引用数
    (Scopus)

▼全件表示

書籍等出版物

  • Machine Learning for Indoor Localization and Navigation

    ( 担当: 分担執筆)

    2023年06月 ISBN: 9783031267116

講演・口頭発表等

  • イジングマシンによる複数日にまたがる旅程最適化

    鮑 思雅  [招待有り]

    第92回高度交通システムとスマートコミュニティ研究発表会  

    発表年月: 2023年03月

  • A quantum computing-based optimization method for multi-day travel recommendation

    Siya Bao  [招待有り]

    発表年月: 2022年11月

共同研究・競争的資金等の研究課題

  • Applications of Large-scale Real-world Geospatial Optimization Problems Using Ising Machines

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists

    研究期間:

    2021年04月
    -
    2024年03月
     

Misc

  • ACOによる時間変化に対応した旅行計画最適化手法

    佐伯, 越志, 鮑, 思雅, 高山, 敏典, 戸川, 望

    マルチメディア,分散,協調とモバイルシンポジウム2023論文集   2023   490 - 503  2023年06月

     概要を見る

    観光産業の振興と情報科学技術の発展によって,ユーザの旅行計画を補助する技術の開発が進んでいる.旅行計画では,人気度や費用など複数の目的関数を同時に最適化することで,ユーザが満足する経路を生成する必要がある.さらに,ユーザに旅行の詳細な情報を与え,ユーザが行動しやすい旅行経路を生成するには,時間依存で変化する移動時間や観光地の価値を考慮するべきである.例えば,移動に公共交通機関を利用する場合,時刻表や移動経路によって出発時刻に依存して移動時間が変化する.観光地の価値についても,夜景が綺麗な観光地や,イベントを開催する観光地,営業時間の存在など,訪問時間によって価値が変化する.本稿では,旅行計画における時間変化する価値を考慮し,複数の目的関数を最適化できる,時間依存多目的旅行計画問題最適化手法を提案する.提案手法は,蟻コロニー最適化において複数の目的関数を異なる重みで考慮する蟻を設定し,フェロモンに時間属性を付加することで時間依存多目的旅行計画問題を解法する.特に,タイムスタンプ付きの過去のユーザの旅行履歴を利用することで時間依存の観光地の価値に対応し,詳細経路 API を利用して時間変動する移動時間に対応する.その上で,詳細経路 API 利用時の応答時間の増加を想定し,API 呼出回数を削減する工夫を導入する.評価実験により,提案手法は既存手法に対し,より時間変化する価値を最適化した旅行経路を生成した.

  • 歩行特性を利用したスマートフォン階段昇降推定

    梶本, 大, 佐伯, 越志, 鮑, 思雅, 戸川, 望

    マルチメディア,分散,協調とモバイルシンポジウム2023論文集   2023   329 - 335  2023年06月

     概要を見る

    GPS (Global Positioning System) をはじめとして,我々は日常的に自己位置を推定している.しかし,GPS を利用できない環境の場合,携帯端末のセンサを用いた PDR (Pedestrian Dead Reckoning) 等の相対的測位手法が必要となる.特に複雑な屋内空間において,歩行者は水平方向に移動するだけでなく垂直方向にも移動する.このとき,エレベータやエスカレータのように歩行者の揺れや振動が少ない移動手段だけではなく,階段のような歩行者に不規則に揺れや振動が生じる場合にも,正確に垂直方向の移動を推定する必要がある.本稿では,スマートフォンを利用した階段昇降推定手法を提案する.提案手法は,歩行者の歩行特性を利用してフロアの水平部分を検出し気圧センサの誤差を解消することで,高い精度で階段中のフロアを推定する.さらに,気圧センサの値がスマートフォンの姿勢に左右されない特性を利用することで,スマートフォンの姿勢によらない階段昇降推定を実現する.評価実験の結果,提案手法は既存手法と比較して,推定誤差を低減し階段昇降を推定できた.

  • 部分QUBOアニーリングによる複数日旅程最適化問題の解法

    野口竜弥, 深田佳佑, 鮑思雅, 戸川望

    情報処理学会研究報告(Web)   2023 ( ITS-092 )  2023年

    J-GLOBAL

  • ACOによる多目的要求に対応した旅行計画最適化手法

    佐伯, 越志, 鮑, 思雅, 高山, 敏典, 戸川, 望

    マルチメディア,分散,協調とモバイルシンポジウム2022論文集   2022   1556 - 1569  2022年07月

     概要を見る

    観光産業の振興と情報科学技術の発展によって,旅行計画サービスの開発が進んでいる.旅行計画サービスが対象とする旅行計画では,満足度や費用など複数の目的関数を同時に最適化することで,ユーザが満足する経路を生成する必要がある.とりわけ,過去に多くのユーザが同様な旅程を計画している,あるいは部分的に同様な旅程を計画していることから,いかに過去のユーザの旅行経路を再利用するかが旅行計画の大きな鍵となる.本稿では,旅行計画に対するユーザの要求を満足するため,多目的オリエンテーリング問題をベースに過去のユーザの旅行経路を陽に利用した旅行計画最適化手法を提案する.提案手法は,蟻コロニー最適化を利用することで,過去のユーザの旅行経路を陽に反映した旅行計画を可能とする.その上で,蟻コロニー最適化において蟻の行動を多様な目的関数に対応して変化させることで,多目的オリエンテーリング問題を解法する.評価実験により,既存手法に対し,過去の旅行者の旅行経路に近く,よりユーザの要求を満足する旅行経路を生成した.

  • イジングマシンを用いた複数日にまたがる観光地選出手法

    鮑思雅, 戸川望

    電子情報通信学会大会講演論文集(CD-ROM)   2022  2022年

    J-GLOBAL

  • 道路照明灯とランドマークを用いた道路照度レベルの評価法

    BAO Siya, YANAGISAWA Masao, TOGAWA Nozomu

    電子情報通信学会大会講演論文集(CD-ROM)   2017  2017年

    J-GLOBAL

▼全件表示

産業財産権

  • 組合せ最適化装置、組合せ最適化方法、およびプログラム

    巴 徳瑪, 新井 淳也, 八木 哲志, 寺本 純司, 川上 蒼馬, 武笠 陽介, 鮑 思雅, 戸川 望

    特許権

 

現在担当している科目

担当経験のある科目(授業)

  • 理工学基礎実験 2A/2B

    早稲田大学  

    2020年09月
    -
    継続中
     

  • Cプログラミング入門

    早稲田大学  

    2020年04月
    -
    継続中
     

 

特定課題制度(学内資金)

  • イジングマシンを用いた旅程最適化

    2023年  

     概要を見る

     本研究では,複数日にまたがる観光地選出問題に注目し,実イジングマシンによる二段階解法を提案する.POIの満足度,POIの滞在時間,ホテルの料金,交通費などの実要素を考慮したうえで,複数日にまたがる観光地選出問題をイジングモデルと等価なQuadratic Unconstrained Binary Optimization (QUBO) に変換し,実イジングマシンによる解法する.1番目のPOIクラスタリングでは,観光日のPOIクラスターを生成し,2番目のPOIルーティングでは,日ごとに最適な交通手段を選択し旅行経路を生成する.提案手法を評価するために,札幌並びに東京周辺を対象に評価実験を行い,制約条件を満たす解が得られたことを確認した.

  • Document-level Sentiment Classification in Japanese Travel Comments of Heterogeneous Sources

    2020年  

     概要を見る

     A user's travel satisfaction is directly and explicitly reflected in their comments compared with the other types of travelogues such as GPS trajectory and check-in data. In this advantage of user comments, it is aiming at shedding lights on determinants of travel satisfaction to serve personalized travel route recommendation. To obtain a large dataset, 479,799 user comments are collected in Tokyo, Kyoto, and Sapporo from three travel websites including TripAdvisor, Jaran, and Ctrip. Prior works have been elaborated on data-source-specific and language-specific analysis. It is found that landmark coverages vary among different websites and users have diverse satisfaction on landmarks depending on their frequently used languages and travel websites. With those findings, a personalized travel route recommendation algorithm is proposed that (1) recommends top-6 personalized landmarks and (2) generates a realistic travel route for a one-day visit. Experimental results confirm the advantages of the proposed algorithm beyond previous studies from the viewpoints of landmark recommendation precision and travel time optimization.