田中 雅史 (タナカ マサシ)

写真a

所属

文学学術院 文学部

職名

講師(専任)

学歴 【 表示 / 非表示

  • 2010年04月
    -
    2013年03月

    東京大学大学院   人文社会系研究科   博士(心理学)  

  • 2008年04月
    -
    2010年03月

    東京大学大学院   人文社会系研究科   修士  

  • 2006年04月
    -
    2008年03月

    東京大学   文学部 心理学   学士  

  • 2004年04月
    -
    2006年03月

    東京大学   教養学部   文III  

学位 【 表示 / 非表示

  • 2013年03月   東京大学   博士(心理学)

経歴 【 表示 / 非表示

  • 2020年04月
    -
    継続中

    早稲田大学   文学学術院   専任講師

  • 2018年07月
    -
    2020年03月

    東北大学大学院   生命科学研究科   助教

  • 2013年07月
    -
    2018年06月

    デューク大学   医学部 神経生物学科   博士研究員

  • 2013年04月
    -
    2013年06月

    東京大学大学院   人文社会系研究科   特任研究員

 

研究分野 【 表示 / 非表示

  • 神経科学一般

  • 基盤脳科学

  • 実験心理学

研究キーワード 【 表示 / 非表示

  • ソングバード

  • 鳥の歌

  • 歌鳥

  • 鳴禽類

  • 鳴禽

全件表示 >>

論文 【 表示 / 非表示

  • A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour

    Masashi Tanaka, Fangmiao Sun, Yulong Li, Richard Mooney

    Nature   563 ( 7729 ) 117  2018年10月  [査読有り]

    DOI

  • Identification of a motor-to-auditory pathway important for vocal learning

    Todd F. Roberts, Erin Hisey, Masashi Tanaka, Matthew G. Kearney, Gaurav Chattree, Cindy F. Yang, Nirao M. Shah, Richard Mooney

    NATURE NEUROSCIENCE   20 ( 7 ) 978 - +  2017年07月  [査読有り]

     概要を見る

    Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor's song. Ablating these neurons in adults had little effect on previously learned songs but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of songs' temporal features that is normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing.

    DOI

  • A Distributed Recurrent Network Contributes to Temporally Precise Vocalizations

    Kosuke Hamaguchi, Masashi Tanaka, Richard Mooney

    NEURON   91 ( 3 ) 680 - 693  2016年08月  [査読有り]

     概要を見る

    How do forebrain and brainstem circuits interact to produce temporally precise and reproducible behaviors? Birdsong is an elaborate, temporally precise, and stereotyped vocal behavior controlled by a network of forebrain and brainstem nuclei. An influential idea is that song premotor neurons in a forebrain nucleus (HVC) form a synaptic chain that dictates song timing in a top-down manner. Here we combine physiological, dynamical, and computational methods to show that song timing is not generated solely by a mechanism localized to HVC but instead is the product of a distributed and recurrent synaptic network spanning the forebrain and brainstem, of which HVC is a component.

    DOI

  • Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences

    Masashi Tanaka, Jonnathan Singh Alvarado, Malavika Murugan, Richard Mooney

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   113 ( 12 ) E1720 - E1727  2016年03月  [査読有り]

     概要を見る

    The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements.

    DOI

  • Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABA(A) receptors

    Wei Chou Tseng, Paul M. Jenkins, Masashi Tanaka, Richard Mooney, Vann Bennett

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   112 ( 4 ) 1214 - 1219  2015年01月  [査読有り]

     概要を見る

    GABA(A)-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. Here we demonstrate that giant ankyrin-G (480-kDa ankyrin-G) promotes stability of somatodendritic GABAergic synapses in vitro and in vivo. Moreover, giant ankyrin-G forms developmentally regulated and cell-type-specific micron-scale domains within extrasynaptic somatodendritic plasma membranes of pyramidal neurons. We further find that giant ankyrin-G promotes GABAergic synapse stability through opposing endocytosis of GABA(A) receptors, and requires a newly described interaction with GABARAP, a GABA(A) receptor-associated protein. We thus present a new mechanism for stabilization of GABAergic interneuron synapses and micron-scale organization of extrasynaptic membrane that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and abnormal neurodevelopment.

    DOI

全件表示 >>

特定課題研究 【 表示 / 非表示

  • 音楽の知覚・認知・生成を支える生物メカニズム

    2020年  

     概要を見る

    本研究では、音楽のような抽象的な音響が動物の情動を動かし、身体運動の促進やストレス軽減など多様な生理機能をもつ神経メカニズムを探求している。本研究では、キンカチョウとヒトを対象として、サイン音で構成された抽象的音響に対する両者の嗜好の共通点を明らかにできた一方で、キンカチョウが好むさえずりの音楽的解析を行うことによって、ヒトの歌と同様のリズム特性を有することも明らかになりつつある。今後、さらに音楽に対するヒトとキンカチョウの生理反応を調べることで、音楽の機能を調べる初の動物モデルとしてキンカチョウを確立できる可能性が期待できる。

 

現在担当している科目 【 表示 / 非表示

全件表示 >>