2024/04/18 更新

写真a

マツザキ カツヒコ
松崎 克彦
所属
教育・総合科学学術院 教育学部
職名
教授
学位
京都大学博士(理学) ( 1992年03月 )
ホームページ

経歴

  • 2010年04月
    -
     

    早稲田大学教育・総合科学学術院教授

  • 2006年04月
    -
    2010年03月

    岡山大学自然科学研究科教授

  • 2005年04月
    -
    2006年03月

    お茶の水女子大学理学部教授

  • 1995年10月
    -
    2005年03月

    お茶の水女子大学理学部助教授

  • 1990年10月
    -
    1995年09月

    東京工業大学理学部助手

学歴

  •  
    -
    1989年

    京都大学   理学研究科   数学専攻  

  •  
    -
    1987年

    京都大学   理学部  

所属学協会

  •  
     
     

    日本数学会

研究分野

  • 幾何学 / 基礎解析学

研究キーワード

  • 複素解析学

  • 双曲幾何学

受賞

  • 解析学賞

    2022年09月   日本数学会  

  • 建部賢弘賞

    1996年11月   日本数学会  

 

論文

  • Strongly symmetric homeomorphisms on the real line with uniform continuity

    Huaying Wei, Katsuhiko Matsuzaki

    Indiana University Mathematics Journal   72 ( 4 ) 1553 - 1576  2023年09月  [査読有り]

    DOI

  • Parametrization of the p-Weil–Petersson curves: holomorphic dependence

    Huaying Wei, Katsuhiko Matsuzaki

    Journal of Geometric Analysis   33 ( 9 )  2023年09月  [査読有り]

     概要を見る

    Similar to the Bers simultaneous uniformization, the product of the p-Weil–Petersson Teichmüller spaces for p≥ 1 provides the coordinates for the space of p-Weil–Petersson embeddings γ of the real line R into the complex plane C . We prove the biholomorphic correspondence from this space to the p-Besov space of u= log γ′ on R for p> 1 . From this fundamental result, several consequences follow immediately which clarify the analytic structures concerning parameter spaces of p-Weil–Petersson curves. Specifically, it implies that the correspondence of the Riemann mapping parameters to the arc-length parameters preserving the images of curves is a homeomorphism with bi-real-analytic dependence of the change of parameters. This is analogous to the classical theorem of Coifman and Meyer for chord-arc curves.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • The p-integrable Teichmüller space for p≥1

    Huaying Wei, Katsuhiko Matsuzaki

    Proceedings of the Japan Academy Series A: Mathematical Sciences   99 ( 6 ) 37 - 42  2023年06月  [査読有り]

     概要を見る

    We verify that the p-integrable Teichmuller space T-p admits the canonical complex Banach manifold structure for any p = 1. Moreover, we characterize a quasisymmetric homeomorphism corresponding to an element of T-p in terms of the p-Besov space for any p > 1.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • BMO embeddings, chord-arc curves, and Riemann mapping parametrization

    Huaying Wei, Katsuhiko Matsuzaki

    Advances in Mathematics   417  2023年03月  [査読有り]

     概要を見る

    We consider the space of chord-arc curves on the plane passing through infinity with their parametrization γ defined on the real line, and embed this space into the product of the BMO Teichmüller spaces. The fundamental theorem we prove about this representation is that γ↦log⁡γ′ is a biholomorphic homeomorphism into the complex Banach space of BMO functions. Using these two equivalent complex structures, we develop a clear exposition on the analytic dependence of involved mappings between certain subspaces. Especially, we examine the parametrization of a chord-arc curve by using the Riemann mapping and its dependence on the arc-length parametrization. As a consequence, we can solve the conjecture of Katznelson, Nag, and Sullivan by showing that this dependence is not continuous.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Space of chord-arc curves and BMO/VMO Teichmüller space

    Katsuhiko Matsuzaki, Huaying Wei

    Annales Fennici Mathematici   48 ( 1 ) 27 - 42  2023年  [査読有り]

     概要を見る

    This paper focuses on the structure of the subspace Tc of the BMO Teichmüller space Tb corresponding to chord-arc curves, which contains the VMO Teichmüller space Tv. We prove that Tc is not a subgroup with respect to the group structure of Tb, but it is preserved under the inverse operation and the left and the right translations by any element of Tv. Moreover, we show that Tb has a fiber structure induced by Tv, and the complex structure of Tb can be projected down to the quotient space Tv\Tb. Then, we see that Tc consists of fibers of this projection, and its quotient space also has the induced complex structure.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • The VMO-Teichmüller space and the variant of Beurling–Ahlfors extension by heat kernel

    Huaying Wei, Katsuhiko Matsuzaki

    Mathematische Zeitschrift   302 ( 3 ) 1739 - 1760  2022年11月  [査読有り]

     概要を見る

    We give a real-analytic section for the Teichmuller projection onto the VMO-Teichmuller space by using the variant of Beurling-Ahlfors extension by heat kernel introduced by Fefferman et al. (Ann Math 134:65-124, 1991). Based on this result, we prove that the VMO-Teichmuller space can be endowed with a real Banach manifold structure that is real-analytically equivalent to its complex Banach manifold structure. We also obtain that the VMO-Teichmuller space admits a real-analytic contraction mapping.

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • The p-Weil–Petersson Teichmüller Space and the Quasiconformal Extension of Curves

    Huaying Wei, Katsuhiko Matsuzaki

    Journal of Geometric Analysis   32 ( 8 ) 213  2022年05月  [査読有り]

     概要を見る

    We consider the correspondence between the space of p-Weil-Petersson curves gamma on the plane and the p-Besov space of u = log gamma' on the real line for p > 1. We prove that the variant of the Beurling-Ahlfors extension defined by using the heat kernel yields a holomorphic map for u on a domain of the p-Besov space to the space of p-integrable Beltrami coefficients. This in particular gives a global real-analytic section for the Teichmuller projection from the space of p-integrable Beltrami coefficients to the p-Weil-Petersson Teichmiiller space.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Teichmüller spaces of piecewise symmetric homeomorphisms on the unit circle

    Huaying Wei, Katsuhiko Matsuzaki

    Pacific Journal of Mathematics   314 ( 2 ) 495 - 514  2021年10月  [査読有り]

     概要を見る

    We interpolate a new family of Teichmuller spaces T-#(X) between the universal Teichmuller space T and its little subspace T-0. Each T-#(X) is defined by prescribing a subset X of the unit circle as the exceptional set of the vanishing property for T-0. The inclusion relation of X induces a natural inclusion of T-#(X), and an approximation of T by an increasing sequence of T-#(X) is investigated. In this paper, we discuss the fundamental properties of T-#(X) from the viewpoint of the quasiconformal theory of Teichmuller spaces. We also consider the quotient space of T by T-#(X) as an analog of the asymptotic Teichmuller space.

    DOI

    Scopus

  • Symmetric and strongly symmetric homeomorphisms on the real line with non-symmetric inversion

    Huaying Wei, Katsuhiko Matsuzaki

    Analysis and Mathematical Physics   11 ( 2 )  2021年06月  [査読有り]

     概要を見る

    A quasisymmetric homeomorphism defines an element of the universal Teichmüller space and a symmetric one belongs to its little subspace. We show an example of a symmetric homeomorphism h of the real line R onto itself such that h- 1 is not symmetric. This implies that the set of all symmetric self-homeomorphisms of R does not constitute a group under the composition. We also consider the same problem for a strongly symmetric self-homeomorphism of R which is defined by a certain concept of harmonic analysis. These results reveal the difference of the sets of such self-homeomorphisms of the real line from those of the unit circle.

    DOI

    Scopus

  • Beurling–Ahlfors extension by heat kernel, A∞-weights for VMO, and vanishing Carleson measures

    Huaying Wei, Katsuhiko Matsuzaki

    Bulletin of the London Mathematical Society   53 ( 3 ) 723 - 739  2021年06月  [査読有り]

     概要を見る

    We investigate a variant of the Beurling–Ahlfors extension of quasisymmetric homeomorphisms of the real line that is given by the convolution of the heat kernel, and prove that the complex dilatation of such a quasiconformal extension of a strongly symmetric homeomorphism (that is, its derivative is an (Formula presented.) -weight whose logarithm is in VMO) induces a vanishing Carleson measure on the upper half-plane.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Teichmüller spaces of generalized symmetric homeomorphisms

    Huaying Wei, Katsuhiko Matsuzaki

    Proceedings of the American Mathematical Society, Series B   7   52 - 66  2020年05月  [査読有り]

     概要を見る

    We introduce the concept of a new kind of symmetric homeomorphism on the unit circle, which is derived from the generalization of symmetric homeomorphisms on the real line. By the investigation of the barycentric extension for this class of circle homeomorphisms and the biholomorphic automorphisms induced by trivial Beltrami coefficients, we show that the Bers Schwarzian derivative map is a holomorphic split submersion and endow a complex Banach manifold structure on the Teichm¨uller space of those generalized symmetric homeomorphisms.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Rigidity of groups of circle diffeomorphisms and Teichmüller spaces

    Katsuhiko Matsuzaki

    Journal d'Analyse Mathematique   140 ( 2 ) 511 - 548  2020年03月  [査読有り]

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Teichmüller space of circle diffeomorphisms with Hölder continuous derivative

    Katsuhiko Matsuzaki

    Revista Matematica Iberoamericana   36 ( 5 ) 1333 - 1374  2020年02月  [査読有り]

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Normalizer, divergence type, and Patterson measure for discrete groups of the Gromov hyperbolic space

    Katsuhiko Matsuzaki, Yasuhiro Yabuki, Johannes Jaerisch

    Groups, Geometry, and Dynamics   14 ( 2 ) 369 - 411  2020年  [査読有り]

     概要を見る

    For a non-elementary discrete isometry group G of divergence type acting on a proper geodesic ı-hyperbolic space, we prove that its Patterson measure is quasi-invariant under the normalizer of G. As applications of this result, we have: (1) under a minor assumption, such a discrete group G admits no proper conjugation, that is, if the conjugate of G is contained in G, then it coincides with G; (2) the critical exponent of any non-elementary normal subgroup of G is strictly greater than half of that for G.

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • Weighted cogrowth formula for free groups

    Johannes Jaerisch, Katsuhiko Matsuzaki

    Groups, Geometry, and Dynamics   14 ( 2 ) 349 - 368  2020年  [査読有り]

     概要を見る

    We investigate the relationship between geometric, analytic and probabilistic indices for quotients of the Cayley graph of the free group Cay.Fn/ by an arbitrary subgroup G of Fn. Our main result, which generalizes Grigorchuk’s cogrowth formula to variable edge lengths, provides a formula relating the bottom of the spectrum of weighted Laplacian on Gn Cay.Fn/ to the Poincaré exponent of G. Our main tool is the Patterson–Sullivan theory for metric trees.

    DOI

    Scopus

  • On horospheric limit sets of Kleinian groups

    Kurt Falk, Katsuhiko Matsuzaki

    Journal of Fractal Geometry   7 ( 4 ) 329 - 350  2020年  [査読有り]

     概要を見る

    In this paper we partially answer a question of P. Tukia about the size of the difference between the big horospheric limit set and the horospheric limit set of a Kleinian group. We mainly investigate the case of normal subgroups of Kleinian groups of divergence type and show that this difference is of zero conformal measure by using another result obtained here: the Myrberg limit set of a non-elementary Kleinian group is contained in the horospheric limit set of any non-trivial normal subgroup.

    DOI

    Scopus

  • Injectivity of the quotient Bers embedding of Teichmüller spaces

    Katsuhiko Matsuzaki

    Annales Academiae Scientiarum Fennicae Mathematica   44 ( 2 ) 657 - 679  2019年  [査読有り]

     概要を見る

    The Bers embedding of the Teichmüller space is a homeomorphism into the Banach space of certain holomorphic automorphic forms. For a subspace of the universal Teichmüller space and its corresponding Banach subspace, we consider whether the Bers embedding can project down between their quotient spaces. If this is the case, it is called the quotient Bers embedding. Injectivity of the quotient Bers embedding is the main problem in this paper. Alternatively, we can describe this situation as the universal Teichmüller space having an affine foliated structure induced by this subspace. We give several examples of subspaces for which the injectivity holds true, including the Teichmüller space of circle diffeomorphisms with Hölder continuous derivative. As an application, the regularity of conjugation between representations of a Fuchsian group into the group of circle diffeomorphisms is investigated.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Dynamics of Teichmüller modular groups and topology of moduli spaces of Riemann surfaces of infinite type

    Katsuhiko Matsuzaki

    Groups, Geometry, and Dynamics   12 ( 1 ) 1 - 64  2018年  [査読有り]

     概要を見る

    © European Mathematical Society. We investigate the dynamics of the Teichmüller modular group on the Teichmüller space of a Riemann surface of infinite topological type. Since the modular group does not necessarily act discontinuously, the quotient space cannot inherit a rich geometric structure from the Teichmüller space. However, we introduce the set of points where the action of the Teichmüller modular group is stable, and we prove that this region of stability is generic in the Teichmüller space. By taking the quotient and completion with respect to the Teichmüller distance, we obtain a geometric object that we regard as an appropriate moduli space of the quasiconformally equivalent complex structures admitted on a topologically infinite Riemann surface.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Continuity of the barycentric extension of circle diffeomorphisms with Hölder continuous derivative

    Katsuhiko Matsuzaki

    Transactions of the London Mathematical Society   4 ( 1 ) 129 - 147  2017年12月  [査読有り]

     概要を見る

    The barycentric extension due to Douady and Earle yields a conformally natural extension of a quasisymmetric self-homeomorphism of the unit circle to a quasiconformal self-homeomorphism of the unit disk. We consider such extensions for circle diffeomorphisms with Hölder continuous derivative and show that this operation is continuous with respect to an appropriate topology for the space of the corresponding Beltrami coefficients.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Planar Riemann surfaces with uniformly distributed cusps: parabolicity and hyperbolicity

    Katsuhiko Matsuzaki, José M. Rodríguez

    Mathematische Nachrichten   290 ( 7 ) 1097 - 1112  2017年05月  [査読有り]

     概要を見る

    We consider a planar Riemann surface R made of a non-compact simply connected plane domain from which an infinite discrete set of points is removed. We give several conditions for the collars of the cusps in R caused by these points to be uniformly distributed in R in terms of Euclidean geometry. Then we associate a graph G with R by taking the Voronoi diagram for the uniformly distributed cusps and show that G represents certain geometric and analytic properties of R.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • The hyperbolic metric on the complement of the integer lattice points in the plane

    Katsuhiko Matsuzaki

    New Trends in Aanlysis and Interdisciplinanr Applications     247 - 252  2017年  [査読有り]

    DOI

  • The Teichmüller space of group invariant symmetric structures on the circle

    Katsuhiko Matsuzaki

    Annales Academiae Scientiarum Fennicae Mathematica   42 ( 2 ) 535 - 550  2017年  [査読有り]

     概要を見る

    © 2017 Annales Academiæ Scientiarum Fennicæ Mathematica. We introduce the quasisymmetric deformation space of a Fuchsian group Γ within the group of symmetric self-homeomorphisms of the circle, and define this as the Teichmüller space AT (Γ) of Γ-invariant symmetric structures. This is another generalization of the asymptotic Teichmüller space, and we verify the basic properties of this space. In particular, we show that AT (Γ) is infinite dimensional, and in fact non-separable if Γ admits a non-trivial deformation, even for a cofinite Fuchsian group Γ.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • The Chabauty and the Thurston topologies on the hyperspace of closed subsets

    Katsuhiko Matsuzaki

    Journal of the Mathematical Society of Japan   69 ( 1 ) 263 - 292  2017年  [査読有り]

     概要を見る

    For a regularly locally compact topological space X of T0 separation axiom but not necessarily Hausdorff, we consider a map σ from X to the hyperspace C(X) of all closed subsets of X by taking the closure of each point of X. By providing the Thurston topology for C(X), we see that σ is a topological embedding, and by taking the closure of σ(X) with respect to the Chabauty topology, we have the Hausdorff compactification X̂ of X. In this paper, we investigate properties of X̂ and C(X̂) equipped with different topologies. In particular, we consider a condition under which a self-homeomorphism of a closed subspace of C(X) with respect to the Chabauty topology is a self-homeomorphism in the Thurston topology.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Asymptotic conformality of the barycentric extension of quasiconformal maps

    Katsuhiko Matsuzaki, Masahiro Yanagishita

    Filomat   31 ( 1 ) 85 - 90  2017年  [査読有り]

     概要を見る

    We first remark that the complex dilatation of a quasiconformal homeomorphism of a hyperbolic Riemann surface R obtained by the barycentric extension due to Douady-Earle vanishes at any cusp of R. Then we give a new proof, without using the Bers embedding, of a fact that the quasiconformal homeomorphism obtained by the barycentric extension from an integrable Beltrami coefficient on R is asymptotically conformal if R satisfies a certain geometric condition.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Growth and cogrowth of normal subgroups of a free group

    Johannes Jaerisch, Katsuhiko Matsuzaki

    Proceedings of the American Mathematical Society   145 ( 10 ) 4141 - 4149  2017年  [査読有り]

     概要を見る

    We give a sufficient condition for a sequence of normal subgroups of a free group to have the property that both their growths tend to the upper bound and their cogrowths tend to the lower bound. The condition is represented by planarity of the quotient graphs of the tree.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Uniform convexity, normal structure and the fixed point property of metric spaces

    Katsuhiko Matsuzaki

    Topology and its Applications   196   684 - 695  2015年12月  [査読有り]

     概要を見る

    We say that a complete metric space X has the fixed point property if every group of isometric automorphisms of X with a bounded orbit has a fixed point in X. We prove that if X is uniformly convex then the family of admissible subsets of X possesses uniformly normal structure and if so then it has the fixed point property. We also show that from other weaker assumptions than uniform convexity, the fixed point property follows. Our formulation of uniform convexity and its generalization can be applied not only to geodesic metric spaces.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • The critical exponent, the hausdorff dimension of the limit set and the convex core entropy of a Kleinian group

    Kurt Falk, Katsuhiko Matsuzaki

    Conformal Geometry and Dynamics   19 ( 8 ) 159 - 196  2015年  [査読有り]

     概要を見る

    In this paper we study the relationship between three numerical invariants associated to a Kleinian group, namely the critical exponent, the Hausdorff dimension of the limit set and the convex core entropy, which coincides with the upper box-counting dimension of the limit set. The Hausdorff dimension of the limit set is naturally bounded below by the critical exponent and above by the convex core entropy. We investigate when these inequalities become strict and when they are equalities.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Certain integrability of quasisymmetric automorphisms of the circle

    Katsuhiko Matsuzaki

    Computational Methods and Function Theory   14 ( 2-3 ) 487 - 503  2014年10月  [査読有り]

     概要を見る

    Using the correspondence between the quasisymmetric quotient and the variation of the cross-ratio for a quasisymmetric automorphism (Formula presented.) of the unit circle, we establish a certain integrability of the complex dilatation of a quasiconformal extension of (Formula presented.) to the unit disk if the Liouville cocycle for (Formula presented.) is integrable. Moreover, under this assumption, we verify regularity properties of (Formula presented.) such as being bi-Lipschitz and symmetric.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Infinite-dimensional Teichmuller spaces and modular groups

    Katsuhiko Matsuzaki

    Handbook of Teichmuller Theory, Vol Iv    2014年

  • An estimate of the maximal dilatations of quasiconformal automorphisms of annuli

    Katsuhiko Matsuzaki

    Complex Variables and Elliptic Equations   58 ( 7 ) 923 - 932  2013年07月  [査読有り]

     概要を見る

    We introduce a certain extremal problem for quasiconformal automorphisms of annuli and give upper and lower estimates for the minimal value of their maximal dilatations. © 2013 Copyright Taylor and Francis Group, LLC.

    DOI

    Scopus

  • Non-divergent infinitely discrete Teichmüller modular transformation

    E. Fujikawa, K. Matsuzaki

    Topics in finite or infinite dimensional complex analysis, Tohoku Univ. Press     97 - 102  2013年  [査読有り]

  • No proper conjugation for quasiconvex cocompact groups of Gromov hyperbolic spaces

    Katsuhiko Matsuzaki, Yasuhiro Yabuki

    IN THE TRADITION OF AHLFORS-BERS, VI   590   125 - 136  2013年  [査読有り]

     概要を見る

    We prove that, if a quasiconvex cocompact subgroup of the isometry group of a Gromov hyperbolic space has a conjugation into itself, then it is onto itself.

    DOI

  • The Nielsen realization problem for asymptotic Teichmüller modular groups

    Fujikawa, Ege, Matsuzaki, Katsuhiko

    Transactions of the American Mathematical Society   365 ( 6 ) 3309 - 3327  2013年  [査読有り]

     概要を見る

    Under a certain geometric assumption on a hyperbolic Riemann surface, we prove an asymptotic version of the fixed point theorem for the Teichm̈uller modular group, which asserts that every finite subgroup of the asymptotic Teichm̈uller modular group has a common fixed point in the asymptotic Teichm̈uller space. For its proof, we use a topological characterization of the asymptotically trivial mapping class group, which has been obtained in the authors' previous paper, but a simpler argument is given here. As a consequence, every finite subgroup of the asymptotic Teichm̈uller modular group is realized as a group of quasiconformal automorphisms modulo coincidence near infinity. Furthermore, every finite subgroup of a certain geometric automorphism group of the asymptotic Teichm̈uller space is realized as an automorphism group of the Royden boundary of the Riemann surface. These results can be regarded as asymptotic versions of the Nielsen realization theorem. © 2013 American Mathematical Society.

    DOI

    Scopus

  • Large and small covers of a hyperbolic manifold

    Petra Bonfert-Taylor, Katsuhiko Matsuzaki, Edward C. Taylor

    Journal of Geometric Analysis   22 ( 2 ) 455 - 470  2012年04月  [査読有り]

     概要を見る

    The exponent of convergence of a non-elementary discrete group of hyperbolic isometries measures the Hausdorff dimension of the conical limit set. In passing to a non-trivial regular cover the resulting limit sets are point-wise equal though the exponent of convergence of the cover uniformization may be strictly less than the exponent of convergence of the base. We show in this paper that, for closed hyperbolic surfaces, the previously established lower bound of one half on the exponent of convergence of "small" regular covers is sharp but is not attained. We also consider "large" (non-regular) covers. Here large and small are descriptive of the size of the exponent of convergence.We show that a Kleinian group that uniformizes a manifold homeomorphic to a surface fibering over a circle contains a Schottky subgroup whose exponent of convergence is arbitrarily close to two. © Mathematica Josephina, Inc. 2010.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • The Petersson series vanishes at infinity

    Katsuhiko Matsuzaki

    QUASICONFORMAL MAPPINGS, RIEMANN SURFACES, AND TEICHMULLER SPACES   575   299 - 311  2012年  [査読有り]

     概要を見る

    The Petersson series with respect to a simple closed geodesic c on a hyperbolic Riemann surface R is the relative Poincare series of the canonical holomorphic quadratic differential on the annular cover of R and it defines a holomorphic quadratic differential phi(c)(z)dz(2) on R. For the hyperbolic metric rho(z)|dz| on R, we give an upper estimate of rho(-2)(z(p))|phi(c)(z(P))| in terms of the hyperbolic length of c and the distance of p E R from c.

    DOI

  • Stable quasiconformal mapping class groups and asymptotic Teichmüller spaces

    Fujikawa, Ege, Matsuzaki, Katsuhiko

    American Journal of Mathematics   133 ( 3 ) 637 - 675  2011年06月  [査読有り]

     概要を見る

    The stable quasiconformal mapping class group is a group of quasiconformal mapping classes of a Riemann surface that are homotopic to the identity outside some topologically finite subsurface. Its analytic counterpart is a group of mapping classes that act on the asymptotic Teichm üller space trivially. We prove that the stable quasiconformal mapping class group is coincident with the asymptotically trivial mapping class group for every Riemann surface satisfying a certain geometric condition. Consequently, the intermediate Teichmüller space, which is the quotient space of the Teichmüller space by the asymptotically trivial mapping class group, has a complex manifold structure, and its automorphism group is geometrically isomorphic to the asymptotic Teichmüllermodular group. The proof utilizes a condition for an asymptotic Teichmüller modular transformation to be of finite order, and this is given by the consideration of hyperbolic geometry of topologically infinite surfaces and its deformation under quasiconformal homeomorphisms. Also these arguments enable us to show that every asymptotic Teichmüller modular transformation of finite order has a fixed point on the asymptotic

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Polycyclic quasiconformal mapping class subgroups

    Katsuhiko Matsuzaki

    Pacific Journal of Mathematics   251 ( 2 ) 361 - 374  2011年  [査読有り]

     概要を見る

    For a subgroup of the quasiconformal mapping class group of a Riemann surface in general, we give an algebraic condition which guarantees its discreteness in the compact-open topology. Then we apply this result to its action on the Teichmüller space. © 2011 by Pacific Journal of Mathematics.

    DOI

    Scopus

  • Twists and Gromov hyperbolicity of riemann surfaces

    Katsuhiko Matsuzaki, José M. Rodríguez

    Acta Mathematica Sinica, English Series   27 ( 1 ) 29 - 44  2011年01月  [査読有り]

     概要を見る

    The main aim of this paper is to study whether the Gromov hyperbolicity is preserved under some transformations on Riemann surfaces (with their Poincaré metrics). We prove that quasiconformal maps between Riemann surfaces preserve hyperbolicity; however, we also show that arbitrary twists along simple closed geodesics do not preserve it, in general. © 2011 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • Checking atomicity of conformal ending measures for kleinian groups

    Kurt Falk, Katsuhiko Matsuzaki, Bernd O. Stratmann

    Conformal Geometry and Dynamics   3 ( 8 ) 116 - 150  2010年06月  [査読有り]

     概要を見る

    In this paper we address questions of continuity and atomicity of conformal ending measures for arbitrary non-elementary Kleinian groups. We give sufficient conditions under which such ending measures are purely atomic. Moreover, we will show that if a conformal ending measure has an atom which is contained in the big horospherical limit set, then this atom has to be a parabolic fixed point. Also, we give detailed discussions of nontrivial examples for purely atomic as well as for non-atomic conformal ending measures. © 1999 American Mathematical Society.

    DOI

    Scopus

  • The action of elliptic modular transformations on asymptotic Teichmüller spaces

    Katsuhiko Matsuzaki

    Teichmüller Theory and Moduli Problem, Ramanujan Math. Soc. Lecture Notes Series 10     481 - 488  2010年  [査読有り]  [招待有り]

  • Symmetric groups that are not the symmetric conjugates of Fuchsian groups

    Katsuhiko Matsuzaki

    IN THE TRADITION OF AHLFORS-BERS, V   510   239 - 247  2010年  [査読有り]

     概要を見る

    A symmetric automorphism of the unit circle is the boundary extension of an asymptotically conformal automorphism of the unit disk. A symmetric group is a quasisymmetric group whose elements are symmetric automorphisms. In this paper, we consider a problem whether a symmetric group is conjugate to a Fuchsian group by a symmetric homeomorphism or not. Our answer is negative.

  • The Patterson-Sullivan measure and proper conjugation for Kleinian groups of divergence type

    Katsuhiko Matsuzaki, Yasuhiro Yabuki

    Ergodic Theory and Dynamical Systems   29 ( 2 ) 657 - 665  2009年04月  [査読有り]

     概要を見る

    A Kleinian group (a discrete subgroup of conformal automorphisms of the unit ball) G is said to have proper conjugation if it contains the conjugate αGα-1 by some conformal automorphism α as a proper subgroup in it. We show that a Kleinian group of divergence type cannot have proper conjugation. Uniqueness of the PattersonSullivan measure for such a Kleinian group is crucial to our proof. © 2008 Cambridge University Press.

    DOI

    Scopus

    11
    被引用数
    (Scopus)
  • Dynamics on teichmüller spaces and self-covering of riemann surfaces

    Ege Fujikawa, Katsuhiko Matsuzaki, Masahiko Taniguchi

    Mathematische Zeitschrift   260 ( 4 ) 865 - 888  2008年12月  [査読有り]

     概要を見る

    A non-injective holomorphic self-cover of a Riemann surface induces a non-surjective holomorphic self-embedding of its Teichmüller space. We investigate the dynamics of such self-embeddings by applying our structure theorem of self-covering of Riemann surfaces and examine the distribution of its isometric vectors on the tangent bundle over the Teichmüller space. We also extend our observation to quasiregular self-covers of Riemann surfaces and give an answer to a certain problem on quasiconformal equivalence to a holomorphic self-cover. © 2008 Springer-Verlag.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Invariance of the Nayatani metrics for Kleinian manifolds

    Katsuhiko Matsuzaki, Yasuhiro Yabuki

    Geometriae Dedicata   135 ( 1 ) 147 - 155  2008年08月  [査読有り]

     概要を見る

    The Nayatani metric g N is a Riemannian metric on a Kleinian manifold M which is compatible with the standard flat conformal structure. It is known that, for M corresponding to a geometrically finite Kleinian group, g N has large symmetry: the isometry group of (M, g N ) coincides with the conformal transformation group of M. In this paper, we prove that this holds for a larger class of M. In particular, this class contains such M that correspond to Kleinian groups of divergence type. © 2008 Springer Science+Business Media B.V.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Elliptic quasiconformal mapping classes acting on asymptotic Teichmüller spaces

    E. Fujikawa, K. Matsuzaki

    Complex Analysis and its Applications, Proceedings of the 15th ICFIDCAA at Osaka City University, OCAMI Studies 2     169 - 173  2008年  [査読有り]

  • On quasiconformal invariance of convergence and divergence types for Fuchsian groups

    Katsuhiko Matsuzaki

    Illinois Journal of Mathematics   52 ( 4 ) 1249 - 1258  2008年  [査読有り]

     概要を見る

    We characterize convergence and divergence types for Fuchsian groups in terms of the critical exponent of convergence and modified functions of the Poincaré series for certain subgroups associated with ends of the quotient Riemann surfaces. As an application of this result, we prove that convergence and divergence type are not invariant under a quasiconformal automorphism of the unit disk. © 2009 University of Illinois.

    DOI

    Scopus

  • Quasiconformal mapping class groups having common fixed points on the asymptotic Teichmüller spaces

    Katsuhiko Matsuzaki

    Journal d'Analyse Mathematique   102 ( 1 ) 1 - 28  2007年08月  [査読有り]

     概要を見る

    For an analytically infinite Riemann surface R, we consider the action of the quasiconformal mapping class group MCG(R) on the Teichmüller space T(R), which preserves the fibers of the projection α: T(R) → AT(R) onto the asymptotic Teichmüller space AT(R). We prove that if MCG(R) has a common fixed point α(p) AT(R), then it acts discontinuously on the fiber T p over α(p), which is a separable subspace of T(R). In particular, this implies that MCG(R) is a countable group. This is a generalization of a fact that MCG(R) acts discontinuously on T o = T(R) for an analytically finite Riemann surface R. © 2007 The Hebrew University of Jerusalem.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • A quasiconformal mapping class group acting trivially on the asymptotic Teichmüller space

    Matsuzaki, Katsuhiko

    Proceedings of the American Mathematical Society   135 ( 8 ) 2573 - 2579  2007年08月  [査読有り]

     概要を見る

    For an analytically infinite Riemann surface R, the quasiconformal mapping class group MCG(R) always acts faithfully on the ordinary Teichmüller space T(R). However in this paper, an example of R is constructed for which MCG(R) acts trivially on its asymptotic Teichmüller space AT (R). © 2007 American Mathematical Society.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • Non-stationary and discontinuous quasiconformal mapping class groups

    Ege Fujikawa, Katsuhiko Matsuzaki

    Osaka Journal of Mathematics   44 ( 1 ) 173 - 185  2007年03月  [査読有り]

     概要を見る

    Every stationary subgroup of the quasiconformal mapping class group of a Riemann surface acts on the Teichmüller space discontinuously if the surface satisfies a certain geometric condition. In this paper, we construct such a Riemann surface that the quasiconformal mapping class group is non-stationary but it still acts on the Teichmüller space discontinuously.

  • The interior of discrete projective structures in the Bers fiber

    Katsuhiko Matsuzaki

    Annales Academiae Scientiarum Fennicae Mathematica   32 ( 1 ) 3 - 12  2007年  [査読有り]

     概要を見る

    The space of all projective structures on a closed surface is a holomorphic vector bundle over the Teichmüller space. In this paper, we restrict the space to the Bers fiber over any fixed underlying complex structure and prove that the interior of the set of discrete projective structures in the Bers fiber consists of those having quasifuchsian holonomy.

  • A classification of the modular transformations of infinite dimensional Teichmuller spaces

    Katsuhiko Matsuzaki

    In the Tradition of Ahlfors-Bers, IV   432   167 - 177  2007年  [査読有り]

     概要を見る

    We classify the modular transformations of infinite dimensional Teichmuller spaces according to the behavior of their orbits. We then consider two classes, stationary and asymptotically elliptic, whose elements have a certain property similar to that of the modular transformations of finite dimensional Teichmuller spaces.

  • Recurrent and periodic points for isometries of L∞ spaces

    Fujikawa, Ege, Matsuzaki, Katsuhiko

    Indiana University Mathematics Journal   55 ( 3 ) 975 - 997  2006年  [査読有り]

     概要を見る

    We study the action of isometries on metric spaces. In particular, we consider the recurrent set of the bilateral shift operator on the Banach space L ∞ (ℤ), and prove that the set of periodic points is not dense in the recurrent set. Then we apply this result to investigating the dynamics of Teichmüller modular groups acting on infinite dimensional Teichmüller spaces as well as composition operators acting on Hardy spaces. Indiana University Mathematics Journal ©.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • A countable Teichmüller modular group

    Matsuzaki, Katsuhiko

    Transactions of the American Mathematical Society   357 ( 8 ) 3119 - 3131  2005年08月  [査読有り]

     概要を見る

    We construct an example of a Riemann surface of infinite topological type for which the Teichmüller modular group consists of only a countable number of elements. We also consider distinguished properties which the Teichmüller space of this Riemann surface possesses. ©2004 American Mathematical Society.

    DOI

    Scopus

    14
    被引用数
    (Scopus)
  • Isoperimetric constants for conservative fuchsian groups

    Katsuhiko Matsuzaki

    Kodai Mathematical Journal   28 ( 2 ) 292 - 300  2005年  [査読有り]

     概要を見る

    The critical exponents of conservative Fuchsian groups are bounded from below by 1/2. It is proved in this note that this result is sharp by giving a sequence of conservative Fuchsian groups whose critical exponents converge to 1/2. The proof is carried out by estimating the isoperimetric constants of hyperbolic surfaces associated with the Fuchsian groups. © 2005, Department of Mathematics, Tokyo Institute of Technology. All rights reserved.

    DOI

    Scopus

    9
    被引用数
    (Scopus)
  • Indecomposable continua and the limit sets of Kleinian groups

    Katsuhiko Matsuzaki

    In the tradition of Ahlfors and Bers, III, Contemporary Math.   355   321 - 332  2004年  [査読有り]

    DOI

  • Inclusion relations between the Bers embeddings of Teichmüller spaces

    Katsuhiko Matsuzaki

    Israel Journal of Mathematics   140   113 - 123  2004年  [査読有り]

     概要を見る

    We prove that if the Bers embeddings of the Teichmüller spaces of infinitely generated Fuchsian groups are coincident, then these Fuchsian groups are the same.

    DOI

    Scopus

    13
    被引用数
    (Scopus)
  • The Infinite Direct Product of Dehn Twists Acting on Infinite Dimensional Teichmüller Spaces

    Matsuzaki, Katsuhiko

    Kodai Mathematical Journal   26 ( 3 ) 279 - 287  2003年  [査読有り]

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • Conservative action of Kleinian groups with respect to the Patterson-Sullivan measure

    Katsuhiko Matsuzaki

    Computational Methods and Function Theory   2   469 - 479  2002年  [査読有り]

  • Simply connected domains on a hyperbolic surface

    Katsuhiko Matsuzaki

    New Zealand Journal of Mathematics   31   159 - 164  2002年  [査読有り]

  • Dynamics of Kleinian groups --- the Hausdorff dimesion of limit sets

    Katsuhiko Matsuzaki

    Selected papers on classical analysis, AMS Translations   204   23 - 44  2001年  [査読有り]  [招待有り]

  • Convergence of the Hausdorff dimension of the limit sets of Kleinian groups

    Katsuhiko Matsuzaki

    In the tradition of Ahlfors and Bers, Contemporary Math.   256   243 - 254  2000年  [査読有り]

  • The Hausdorff dimension of the limit sets of infinitely generated Kleinian groups

    Katsuhiko Matsuzaki

    Mathematical Proceedings of the Cambridge Philosophical Society   128 ( 1 ) 123 - 139  2000年01月  [査読有り]

     概要を見る

    In this paper we investigate the Hausdorff dimension of the limit set of an infinitely generated discrete subgroup of hyperbolic isometries and obtain conditions for the limit set to have full dimension. © 2000 Cambridge Philosophical Society.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • The isomorphism theorem of Kleinian groups

    Katsuhiko Matsuzaki

    Analysis and Topology, World Scientific     507 - 513  1998年  [査読有り]

  • Structural stability of Kleinian groups

    K Matsuzaki

    MICHIGAN MATHEMATICAL JOURNAL   44 ( 1 ) 21 - 36  1997年  [査読有り]

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • The Petersson series for short geodesics

    Katsuhiko Matsuzaki

    Proceedings of the XVI Rolf Nevanlinna Colloquium, Walter de Gruyter     143 - 150  1996年  [査読有り]

  • Bounded and integrable quadratic differentials: hyperbolic and extremal lengths on Riemann surfaces

    MATSUZAKI K.

    Geometric Complex Analysis     443 - 450  1996年  [査読有り]  [招待有り]

    CiNii

  • Conformal conjugation of Fuchsian groups from the first kind to the second kind

    K Matsuzaki, H Shiga

    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK   476 ( 476 ) 191 - 200  1996年  [査読有り]

  • Teichmüller spaces with variable bases in the universal Teichmüller space

    Katsuhiko Matsuzaki

    Annales Academiae Scientiarum Fennicae Mathematica   20 ( 1 ) 27 - 36  1995年  [査読有り]

  • The conservative-dissipative dichotomy for geometric covers of Riemann surfaces

    Katsuhiko Matsuzaki

    Revue Roumaine de Mathématiques Pures et Appliquées   40   77 - 80  1995年  [査読有り]

  • Projective structures inducing covering maps

    Katsuhiko Matsuzaki

    Duke Mathematical Journal   78 ( 2 ) 413 - 425  1995年  [査読有り]

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • NOTES ON PROJECTIVE-STRUCTURES AND KLEINIAN-GROUPS

    K MATSUZAKI, JA VELLING

    OSAKA JOURNAL OF MATHEMATICS   31 ( 1 ) 165 - 175  1994年03月  [査読有り]

  • ERGODIC PROPERTIES OF DISCRETE-GROUPS - INHERITANCE TO NORMAL-SUBGROUPS AND INVARIANCE UNDER QUASI-CONFORMAL DEFORMATIONS

    K MATSUZAKI

    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY   33 ( 1 ) 205 - 226  1993年02月  [査読有り]

  • Simply connected invariant domains of Kleinian groups not in the closures of Teichmüller spaces

    Katsuhiko Matsuzaki

    Complex Variables   22   93 - 100  1993年  [査読有り]

    CiNii

  • THE ACTION AT INFINITY OF CONSERVATIVE GROUPS OF HYPERBOLIC MOTIONS NEED NOT HAVE ATOMS

    JA VELLING, K MATSUZAKI

    ERGODIC THEORY AND DYNAMICAL SYSTEMS   11 ( 3 ) 577 - 582  1991年09月  [査読有り]

     概要を見る

    Herein the authors show that discrete groups of motions on Hn+1 may be conservative on S(n) but have no positive measure ergodic components for this boundary action. An explicit example of such a group is given for H-3 using the Apollonian circle packing of R2.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • A CHARACTERIZATION OF EXTENDED SCHOTTKY TYPE-GROUPS WITH A REMARK TO AHLFORS CONJECTURE

    K MATSUZAKI

    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY   31 ( 1 ) 259 - 264  1991年02月  [査読有り]

  • Geometric finiteness, quasiconformal stability and surjectivity of the bers map for kleinian groups

    Katsuhiko Matsuzaki

    Tohoku Mathematical Journal   43 ( 3 ) 327 - 336  1991年  [査読有り]

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Certain estimates on kleinian groups by the core of their quotient 3-manifold

    Katsuhiko Matsuzaki

    Kodai Mathematical Journal   13 ( 3 ) 377 - 385  1990年  [査読有り]

    DOI

    Scopus

▼全件表示

書籍等出版物

  • Topics in finite or infinite dimensional complex analysis : proceedings of the 19th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications, December 11-15, 2011, Aster Plaza, Hiroshima, Japan

    Katsuhiko Matsuzaki, Toshiyuki Sugawa

    Tohoku University Press  2013年 ISBN: 9784861632198

  • Hyperbolic Manifolds and Kleinian Groups

    Katsuhiko Matsuzaki, Masahiko Taniguchi

    Oxford University Press  1998年04月 ISBN: 9780198500629

  • 双曲的多様体とクライン群

    谷口 雅彦, 松崎 克彦

    日本評論社  1993年 ISBN: 9784535782020

共同研究・競争的資金等の研究課題

  • レブナー方程式とタイヒミュラー空間論

    日本学術振興会  科学研究費助成事業 基盤研究(B)

    研究期間:

    2023年04月
    -
    2028年03月
     

    松崎 克彦

  • 画像処理における2次元曲線の変形の効率化と等角接合による認証

    日本学術振興会  科学研究費助成事業

    研究期間:

    2023年06月
    -
    2026年03月
     

    松崎 克彦

  • 微分幾何的擬等角拡張と調和解析的普遍タイヒミュラー空間論

    日本学術振興会  科学研究費助成事業 基盤研究(B)

    研究期間:

    2018年04月
    -
    2023年03月
     

    松崎 克彦, 新井 仁之, 須川 敏幸, 佐官 謙一, 小森 洋平, 柳下 剛広

     概要を見る

    タイヒミュラー空間上の計量としてはタイヒミュラー計量やヴェイユ・ピーターソン計量が代表的であるが,これらはどのようなバナッハ空間をモデルとする複素構造を導入するかにより自然に定義されるフィンスラー計量である.本研究で扱う BMOタイヒミュラー空間は,単位円板および単位円周上で定義されるBMO関数に関連した擬等角写像のなす空間である.この空間にはある方法で Carleson 測度を構成するような正則2次微分からなるバナッハ空間をモデルとした複素構造が入り,したがって自然にCarleson 計量と名付けた計量が定義できる.この計量の性質を考察することが当初の研究計画であった.しかし,実軸という非コンパクトな定義域上で漸近的等角写像のタイヒミュラー空間およびVMOタイヒミュラー空間を考察するという問題に遭遇し,その研究に関して以下のような成果が得られた.擬等角写像(擬対称写像)を限定して普遍タイヒミュラー空間の部分空間を考える場合には,その条件をコンパクト集合(単位円周)上で置くか非コンパクト集合(実軸)上で置くかで理論が大きく異なる場合がある.
    (1)実軸上のVMOタイヒミュラー空間を構成する強対称写像について,それ自身および逆写像の一様連続性を仮定すればその全体は群構造をもち,また退化Carleson 測度を誘導するような上半平面上の擬等角写像に拡張することが証明された.
    (2)実軸上の漸近的等角写像のタイヒミュラー空間の概念を一般化し,区分的な対称写像による空間を普遍タイヒミュラー空間の閉部分空間として定式化した.これらの空間の増大列による普遍タイヒミュラー空間を補間する結果および商空間の構成を得た.計量については,商空間の複素構造を定義し,商フィンスラー計量を与えた.また,小林計量とタイヒミュラー計量の比較について,先行研究の方法では解決しない問題点を提示した.

  • 調和解析的普遍タイヒミュラー空間論

    日本学術振興会  科学研究費助成事業 特別研究員奨励費

    研究期間:

    2021年04月
    -
    2023年03月
     

    松崎 克彦, Wei Huaying

  • 楕円型作用素の解析とその幾何学的函数論への応用

    日本学術振興会  科学研究費助成事業 基盤研究(B)

    研究期間:

    2017年04月
    -
    2022年03月
     

    須川 敏幸, 志賀 啓成, 高橋 淳也, 相川 弘明, 柳原 宏, 船野 敬, 坂口 茂, 松崎 克彦, 菊田 伸

     概要を見る

    研究代表者の須川は主に高次元擬等角写像の局所的な性質(連続度の評価など)および境界における挙動が各点ごとに定義された最大歪曲度からどのような制約を受けるかということについて研究を行った.そのため,高次元におけるタイヒミュラー型の評価を定式化し,さらにそれの境界版も確立した.現在はまだ基礎的な研究段階であるが,より複雑な(擬等角とは限らない)同相写像についての応用が見込まれる.また,一般次元における領域の境界の一様完全性とその領域の距離的またはポテンシャル論的な性質との関わりについてVuorinen氏らとの共同研究において考察を行った.さらに平面領域の場合には双曲計量を用いた新しい特徴付けがいくつか得られており,現在論文の形にまとめているところである.
    分担者の相川氏はIntrinsic ultracontractivity の研究を応用して,Lipschitz領域やJohn領域をベースにするシリンダー上の熱方程式の優解の可積分性を与えた.これは正値優調和関数の可積分性に関する結果のの放物型拡張である.
    分担者の志賀氏は一般化されたカントール集合の擬等角同値性をそのカントール集合を定義する数列によって評価し,それを用いてある条件のもとでカントール集合のハウ スドルフ次元が等しくなることを示した.
    分担者の坂口氏は不連続な伝導係数を持つある楕円型作用素に対する非有界領域上の最大値原理や比較定理を示した.

  • 双曲性をもつ離散群の正規部分群に関する収束指数スペクトルと余増大度剛性の研究

    日本学術振興会  科学研究費助成事業 挑戦的萌芽研究

    研究期間:

    2016年04月
    -
    2020年03月
     

    松崎 克彦, イェーリッシュ ヨハネス

     概要を見る

    自由群のケーリーグラフへの正規部分群の等長的作用に関する収束指数と,商グラフ上の離散ラプラシアンのスペクトルの底との間には,Grigorchuk の余増大公式という関係がある.クライン群の収束指数と双曲多様体上のラプラシアンに対しても 同様の結果は Sullivan により証明されたが,共通する点はもとの群の収束指数の1/2で相転移が起こることである.本研究では,自由群のケーリーグラフの辺の長さを変動させた場合にも,正規部分群の収束指数に依存して定まる重み付きの離散ラプラシアンに対して,そのスペクトルの底との間に余増大公式の一般化が証明された.収束指数の1/2での相転移も確かめられた.

  • 無限次元タイヒミュラー空間上のヴェイユ・ピーターソン計量の研究

    日本学術振興会  科学研究費助成事業 基盤研究(B)

    研究期間:

    2013年04月
    -
    2019年03月
     

    松崎 克彦, 中西 敏浩, 須川 敏幸, 佐官 謙一, 小森 洋平, 谷口 雅彦, 柳下 剛広

     概要を見る

    ヘルダー連続微分をもつ単位円周の微分同相写像のタイヒミュラー空間を普遍タイヒミュラー空間の部分空間として導入した.この空間に複素バナッハ多様体の構造を与え,その位相は写像のヘルダー定数から定義される位相と一致することを証明した.また,等角重心拡張がタイヒミュラー空間からの連続な切断を定義することも証明した.次に,そのような微分同相写像群が対称写像による共役に関する剛性をもつことを示した.応用として,その群が同じ滑らかさをもつ微分同相写像でメビウス変換群に共役となるための条件を与えた.ヴェイユ・ピーターソン計量をもつ可積分タイヒミュラー空間に等長的に作用する群の固定点をみつける方法によった.

  • フラクタル構造のタイヒミュラー空間についての研究

    日本学術振興会  科学研究費助成事業 基盤研究(C)

    研究期間:

    2015年04月
    -
    2018年03月
     

    谷口 雅彦, 藤村 雅代, 松崎 克彦, 藤川 英華

     概要を見る

    本研究の主目標は「フラクタル構造のタイヒミュラー空間」を定式化することであったが、一般リーマン面上のフラクタル構造から得られる無限可算点配置から得られるフラクタル構造のタイヒミュラー空間の定式化を完成させた。さらに標準的な幾何学的有界性を仮定すれば、そのようなタイヒミュラー空間が複素構造を許容することも明らかにした。
    次にフラクタル構造のタイヒミュラー空間上に幾何学的大域座標を導入することが第二の目標であったが、メビウス半群やクライン群さらには無限生成ケーベ群などに付随するフラクタル構造のタイヒミュラー空間上の幾何学的大域座標を導入し擬等角変形空間の大域表現を得た。

  • Thermodynamic formalism for conformal semigroup actions

    日本学術振興会  科学研究費助成事業 研究活動スタート支援

    研究期間:

    2015年08月
    -
    2017年03月
     

    イェーリッシュ ヨハネス, 角 大輝, 松崎 克彦

     概要を見る

    私は、等角半群作用の力学系的性質と幾何学的性質の相互作用を中心に研究しました。主な研究結果の内の2つは以下の通りです。
    1)私はマルチフラクタル解析をランダム複素力学系の研究に応用しました。とくに、ランダム複素力学系における初期値の長時間挙動のHoelder条件の指数を研究しました(J. Jaerisch,H. Sumi,Adv.Math.2017)。
    2)私は抽象的な自由群とその正規部分群のPoincare指数を研究しました。その証明においてはCayley graph の離散ラプラシアンを用いました(J. Jaerisch, K. Matsuzaki, Proc. AMS.to appear)。

  • 円周上の微分同相写像群の共役問題の解決

    日本学術振興会  科学研究費助成事業 挑戦的萌芽研究

    研究期間:

    2012年04月
    -
    2016年03月
     

    松崎 克彦, 谷口 雅彦, 藤川 英華

     概要を見る

    (1)ヘルダー連続微分をもつ円周の微分同相写像のタイヒミュラー空間を構成し,その基礎を確立した.(2)メビウス変換群の対称写像による共役の各元がヘルダー連続微分をもつ微分同相写像の場合,共役写像も同じオーダーのヘルダー連続微分をもつことを証明した.(3)オーダーが 1/2 より大きいヘルダー連続微分をもつ微分同相写像群が,同じオーダーの共役写像によりメビウス変換群の共役となるための必要十分条件を,微分同相写像の擬等角拡張の歪曲係数の一様可積分性より与えた.(4)オーダー1/2より大を仮定しない場合は,歪曲係数の可積分性が一様にある定数より小さいならば十分であることを証明した.

  • 熱力学形式によるクライン群の幾何の研究

    日本学術振興会  科学研究費助成事業 特別研究員奨励費

    研究期間:

    2014年04月
    -
    2015年03月
     

    松崎 克彦, JAERISCH Johannes

     概要を見る

    はじめに,フックス群および自由群の非自明正規部分群で,収束指数がもとの群の 1/2 となるものの例の構成を試みた.収束指数を商空間のラプラシアンのスペクトルの底で読み替えて,それを幾何学的に評価する方針をとったが,等周定数を用いる方法では原理的に不可能であることがわかった.ラプラシアンの固有関数を構成して,スペクトルの底を直接に評価することも成功しなかった.収束指数が最大指数の 1/2 以下となる群の構成法がほとんど知られていないこと,およびある軌道に関する反転で生成される群の収束指数をもとの軌道に関する収束指数で評価する問題が重要であることが判明した.
    <br>
    その後,収束指数がもとの群の 1/2 に近づく非自明正規部分群の列の構成を自由群の場合に考察した.方法はやはりスペクトルの底を等周定数を用いて評価するのであるが, Mohar によるグラフ理論の結果で,スペクトルの底は等周定数を用いて評価できることがわかった.さらに,等周定数は平面グラフの場合には単射半径で評価できることを示した.結論としては,自由群の生成元の十分大きなべきで生成される正規部分群の列をとれば,収束指数がもとの群の 1/2 に近づくことが証明できた.
    <br>
    (相対)双曲群の非自明正規部分群による剰余類群の増大度(収束指数)に関するW. Yang の結果に,これがもとの双曲群の収束指数に近づくような群の列を構成するものがある.剰余類群の増大度と,上で述べた商空間のラプラシアンのスペクトルの底および等周定数の間の関係は,Mohar による同じ論文で研究されている.これにより,自由群の場合には剰余類群の増大度の問題は,非自明正規部分群の収束指数(双対増大度)に関する研究結果からも従うことがわかった.さらに,自由群の収束指数,非自明正規部分群の双対増大度および剰余類群の増大度の間に成立する関係式を導くことができた.

  • 幾何学的函数論の多面的研究

    科学研究費助成事業(東北大学)  科学研究費助成事業(基盤研究(B))

    研究期間:

    2010年04月
    -
    2015年03月
     

    須川 敏幸, 志賀 啓成, 柳原 宏, 佐官 謙一, 松崎 克彦, 藤川 英華, 水田 義弘, 谷口 雅彦, 藤原 耕二, 阿部 誠, 阿部 誠, 水田 弘

     概要を見る

    幾何学的函数論における典型的な問題は幾何的に記述される平面内の(単連結)領域と,単位円板からその領域への等角写像の解析的性質との関係を調べることです.ビーベルバッハは a_0=0, a_1=1と正規化された単位円板上の解析函数 f(z)=a_0+a_1z+a_2z^2+… がある領域への等角写像ならば |a_n|≦ n であることを予想しました.それは70年後にドブランジュにより示されました.本研究ではたとえば,係数 a_n の2倍が整数であるような等角写像は全部で21個に限ることを示しました.a_n がすべて整数の場合は9個に限ることは知られていたので,12個増えることになります.

  • 対称構造のタイヒミュラー空間と擬等角写像類群の剛性および固定点問題

    日本学術振興会  科学研究費助成事業 基盤研究(B)

    研究期間:

    2008年04月
    -
    2013年03月
     

    松崎 克彦, 谷口 雅彦, 須川 敏幸, 佐官 謙一, 志賀 啓成, 中西 敏浩, 宮地 秀樹, 糸 健太郎, 藤川 英華

     概要を見る

    円周の自己同相写像に擬等角拡張の観点から様々のクラスを設定し,その集まり全体のパラメーター空間であるタイヒミュラー空間について研究した.とくにタイヒミュラー空間に作用する群が固定点をもつための条件を,対称写像のタイヒミュラー空間を中心にして考察した.応用として,微分自己同相写像からなる群が円周の標準的な群作用(メビウス変換群)と共役になるための条件,および,そのような群の変形が自明となる(剛性をもつ)ための条件を与えた.

  • 複素力学系の群論への応用:Burnside問題とHopf問題

    岡山大学・早稲田大学  科学研究費 萌芽研究

    研究期間:

    2008年04月
    -
    2011年03月
     

    松崎克彦

     概要を見る

    グロモフ双曲空間に作用する等長変換からなる離散群について,等長変換による共役で与えられる自己単射準同型に関するco-Hopf問題を考えた.co-Hopf問題とは自己単射準同型が全射となる条件をさがす問題である.昨年度以来,quasiconvex cocompact群に対しては,共役で与えられる自己単射準同型が全射となることを示す議論を得ていたが,今年度はその細部を精査し,論文にまとめ,講演として発表することができた.また,古典的双曲空間のクライン群の場合はより広く発散型の群に対して成立するので,グロモフ双曲空間でもそれを目標とした.そのために解決するべき問題は,擬等角不変測度の一意性の適切な定式化にあることが解明できた.
    写像類群の極限集合の孤立点とBurnside問題については,写像類群の固定点集合のある性質を仮定すれば孤立点の存在が証明できるところまではわかった.写像類群は位相的無限型のリーマン面のに対してはタイヒミュラー空間には不連続に作用するとは限らず,極限集合がタイヒミュラー空間内に定義される.多くの場合は極限集合は完全集合となる.しかし,写像類群の部分群としてリーマン面の等角自己同型群を考えると,極限集合が孤立点をもつためには,それは無限群であるがすべての真部分群が有限群であるような群を指数有限に含む必要があることがわかる.このような有限生成群はBurnside問題として研究されperiodic groupとよばれている.楕円モジュラー群の主合同部分群の剰余類群としてperiodic groupを実現すれば,対応するリーマン面の等角自己同型群としてそれはあらわれる.写像類群の非自明な元の固定点集合全体が閉集合であることを仮定すれば,このようなタイヒミュラー空間に対して写像類群の極限集合が孤立点をもつことが証明できた.

  • グロタンディークデッサンと非合同的タイヒミュラー被覆の数論

    科学研究費助成事業(岡山大学)  科学研究費助成事業(萌芽研究)

    研究期間:

    2007年
    -
    2009年
     

    中村 博昭, 鳥居 猛, 鈴木 武史, 吉野 雄二, 山田 裕史, 松崎 克彦, 廣川 真男, 石川 佳弘

     概要を見る

    昨年度に基礎を確立した複素および1進の反復積分の関数等式の導出法(Wojtkowiak氏との共同研究)を延長して,具体的な実例計算をさらに検証した.とりわけ古典的な高次対数関数について知られている分布関係式(distribution relation)の1進版を導出することに成功した.分布関係式は,様々な特殊値を代入することで,高次対数関数の特殊値の間に成立する様々な関係式を組織的に生み出す重要なものであり,1進の場合にも並行してガロア群上の関数族(1-コチェイン)を統御する要となることが期待されるが,前年度までに得られた関数等式との整合性についても検証を行った.8月にケンブリッジのニュートン数理科学研究所で行われた研究集会"Anabelian Geometry"において口頭発表を行った.このときの講演に参加していたH.Gangl氏,P.Deligne氏から今後の研究指針を考える上で有用になると思われるコメントを頂戴することが出来た.また分布関係式の低次項の解消問題に関連して,有理的な道に沿った解析接続の概念にっいて考察を進める必要が生じた.こうしたテーマに関連して研究分担者の鳥居氏には,有理ホモトピー論に関する情報収集を担当していただき,また研究分担者の鈴木氏には,量子代数やKZ方程式との関連で組みひも群の数理についての情報収集を担当していただいた.以上の研究成果の一部は,共同研究者のWojtkowiak氏と協力して,"On distribution formula of complex and 1-adic polylogarithms"という仮題の草稿におおよその骨子をまとめたが,まだ完成に至っていない.周辺にやり残した問題(楕円ポリログ版など)もあり,これらについて一定の目処をつけてから公表までの工程を相談する予定になっている.

  • 等角不変量をめぐる幾何学的函数論の新展開

    科学研究費助成事業(広島大学)  科学研究費助成事業(基盤研究(B))

    研究期間:

    2005年
    -
    2008年
     

    須川 敏幸, 水田 義弘, 佐官 謙一, 柴 雅和, 吉野 正史, 谷口 雅彦, 志賀 啓成, 松崎 克彦, 中西 敏浩, 下村 哲

     概要を見る

    双曲計量, 環状幅, 調和測度などを幾何学的函数論やポテンシャル論の立場から研究し, 多くの定理や応用を得た.また, 等角計量が与えられたリーマン面間の正則写像の不変高階微分や不変シュワルツ微分についても研究を行い, その基本的な性質を明らかにした.

  • 実解析的および複素多様体の変形と不変量の変分の総合的研究

    科学研究費助成事業(東京工業大学)  科学研究費助成事業(基盤研究(A))

    研究期間:

    2005年
    -
    2008年
     

    志賀 啓成, 相川 弘明, 須川 敏幸, 村田 實, 松崎 克彦, 野口 潤次郎, 宮嶋 公夫, 今吉 洋一, 宍倉 光広, 角 大輝

     概要を見る

    タイヒミュラー空間およびその境界が表現する平面領域の解析的性質について成果が得られた.たとえばタイヒミュラー空間の内部に現れる単連結領域がそのリーマン写像の増大度で特徴づけられた.このような領域は多次元空間でそのポテンシャル論的性質も研究され,新たな知見を得た.複素力学系では中立不動点の摂動において,放物的くりこみの概念が定義され,それを用いて局所不変集合の構造が決定された.多変数値分布論においては,準アーベル多様体での第二主要定理が証明され,正則曲線の代数的退化に対して新しい知見を得た.

  • 擬等角写像群と普遍タイヒミュラー空間のモジュラー群の研究

    日本学術振興会  科学研究費助成事業 基盤研究(B)

    研究期間:

    2004年04月
    -
    2007年
     

    松崎 克彦, 谷口 雅彦, 中西 敏浩, 志賀 啓成, 須川 敏幸, 佐官 謙一

     概要を見る

    タイヒミュラー空間はリーマン面の等角構造の変形空間である.擬等角写像類群はリーマン面の擬等角自己同相群のある商群であり,タイヒミュラー空間に双正則自己同型(モジュラー変換)として作用する.タイヒミュラー空間が有限次元のときは,それらは数学の様々な分野で重要な対象として広く研究されている.これを無限次元タイヒミュラー空間に拡張することをめざした.この研究課題では,擬等角写像類群のタイヒミュラー空間への作用の力学系を考察する.そのために,漸近的タイヒミュラー空間とよばれるタイヒミュラー空間の商空間も考えた.
    はじめに写像類群の作用の再帰集合について研究し,周期点集合がそのなかで稠密ではないことを証明した.この結果は,あとの楕円型モジュラー変換(等角写像類)の作用とモジュラー変換の分類の研究の基礎となった.分類は軌道の振る舞いを基にしてなされ,有限次元タイヒミュラー空間の場合と似た性質をもつ2つのクラスと特定した.ひとつは停留的写像類のクラスであり,もうひとつは漸近的タイヒミュラー空間に固定点をもつようなモジュラー変換のクラスである.停留的写像類群の作用は安定的であることに着目したが,一方で停留的ではないが不連続に作用する写像類群の例も構成した.極端な場合として,写像類群が共通の固定点を漸近的タイヒミュラー空間にもつとき,その群は可算個の元からなることを証明した.
    関連する題材として,リーマン面の自己被覆について研究した.双曲リーマン面が(非単射)正則自己被覆を許容するための必要条件を対応するフックス群の言葉で与えた.すなわち,フックス群がポアンカレ級数の臨界指数において発散型であるならば,対応するリーマン面は自己被覆を許容しない.証明にはPatterson-Sullivan測度の一意性を用い,これは高次元の場合にも拡張可能である.リーマン面の正則自己被覆はタイヒミュラー空間の非全射自己埋め込みを誘導する.この埋め込みがつくる力学系を考察し,タイヒミュラー空間上の等長接ベクトルの分布について調べた.また,これらの議論を擬正則自己被覆の場合に拡張することを行った.

  • 無限次元タイヒミュラー空間上のモジュラー群の力学系

    日本学術振興会  科学研究費助成事業 基盤研究(C)

    研究期間:

    2002年04月
    -
    2003年
     

    松崎 克彦, 須川 敏幸

     概要を見る

    タイヒミュラー空間は非等質的な空間であり,モジュラー群は推移的には作用しない.コンパクトリーマン面の場合,モジュラー群の作用は不連続であるが,タイヒミュラー空間が無限次元になるとこの様相は一変する.このカオス的様相とタイヒミュラー空間の非等質性をあわせて,無限型リーマン面のモジュライ空間を新しい研究対象としてとらえなおした.一般位相幾何学的には,このモジュライ空間は距離付け可能な場合と第一分離公理すらみたさない場合の両極にわかれる.しかし特異性は一部分にしかなく,残りはよい構造が入りうる部分である.このような安定領域をリーマン面の双曲幾何学的特性で特徴づけ,安定領域を完備化することにより,複素構造全体をある同値関係で縮約したモジュライ空間を構成した.具体的には,1点集合の閉包をリーマン面上の幾何で記述することが可能になり,意味のあるモジュライ空間の点とは何かを具体的に与えられようになった.
    普遍タイヒミュラー空間のモデルの一つである擬等角拡張可能な単位円板上の正則函数の前シュワルツ微分全体のなす空間を考察し,それらの連結成分や古典的な単葉函数族との関係,および凸性について研究を行った.また,普遍タイヒミュラー空間のベアス埋め込みの位置に応じて,対応する単葉函数がどのような幾何的な性質を持つかを調べ,たとえばシュワルツ微分の増大度についてのある制限のもとに,原点からの距離が小さければその函数が星状であったり,凸状であったりするという結果を得た.

  • リーマン面上の射影構造の離散的ホロノミー表現の研究

    お茶の水女子大学  科学研究費 奨励研究(A)

    研究期間:

    2000年04月
    -
    2002年03月
     

    松崎克彦

     概要を見る

    閉曲面S上に入る射影構造、すなわち局所的にリーマン球面をモデルとし,座標変換がメビウス変換であるような幾何構造を考える.リーマン面上の射影構造全体の空間は,その上の正則2次微分全体のなすベクトル空間と同一視することができるが,リーマン面の複素構造も変形して面S上,の全射影構造の空間を考えると,タイヒミュラー空間を底空間とし,各ファイバーが正則2次微分の複素ベクトル空間である解析的バンドルP(S)が得られる.P(S)からSの基本群のPSL(2, C)表現空間への写像で,射影構造に対してそのホロノミー表現を対応させたものをホロノミー写像という.面の基本群の離散表現空間は複素力学系理論における有理関数のマンデルブロー集合に相当するものである.これを擬等角写像等の複素解析的方法と,面上の双曲構造およびPSL(2, C)表現に対応して現れる3次元双曲多様体の幾何学を用いて解析した.
    マンデルブロー集合の境界の解析のためには,擬フックス群の場合に射影構造の構成法の一意性を述べたGoldmanの定理を,ホロノミー表現が全退化群となるものにも拡張することが必要になった.このためには,展開写像から決まるある種の領域がリーマンのを位相的には単純に分割していることを示し,その分割から展開写像の構成法に関する情報を引き出すことが問題であった.極限集合の局所連結性は仮定できないので,古典的な平面上の等角写像の境界挙動の解析を用いた新しい手作りの議論が要求された.Goldmanの定理の拡張のためのプログラムが公表でき,いくつかのステップを設定し,リーマン面上の単連結領域に関する論文を書いた.しかし,全退化群の極限集合を考える過程で,連続体の分解可能性という概念が議論のために本質的であることにはじめて気付いた.これはgeneral topologyにおける問題であったが,それ自身膨大な研究がされている分野であると同時に,力学系の理論でも特異集合の分解可能性が問題の本質になっている場合が多い.実際,複素力学系のジュリア集合の分解可能性についてもRogersによる一連の仕事が既になされていた.それをクライン群の場合に焼き直した論文を書いた.

  • 複素力学系の解析的研究

    科学研究費助成事業(京都大学)  科学研究費助成事業(基盤研究(B))

    研究期間:

    2001年
    -
    2002年
     

    谷口 雅彦, 志賀 啓成, 木坂 正史, 國府 寛司, 松崎 克彦

     概要を見る

    平成13年度には、まず多岐にわたる複素力学系における現象の包括的理解のために、いくつかのグループに分かれて現状の把握と総括を行い、個別の研究での類似性に着目して複素力学系共通の理念の抽出に努めた。平成14年にはさらに、分担者の国府寛司・木坂正史氏ら、および志賀啓成・松崎克彦氏らとともに、それぞれ国際研究集会を組織して、この間に得られた成果と提起されてきた将来の研究課題を総括した。その結果、特に志賀啓成・松崎克彦らにより、有限生成クライン群と有理函数の与える力学系の類似性に関しては、タイヒミュラー理論の観点からも分岐理論の観点からも多くの成果が得られた。代表者谷口雅彦は、本来遂行目標であるサリバンの辞書の構築、すなわち有理函数とクライン群の統一的理解、を進めると共に、クライン群におけるケーリーグラフや多項式の力学系的構造を被覆構造から記述するといったサリバンの辞書における概念・手法を、整函数の研究に敷衍し「配置樹木」という組み合わせ論的モデルを発明した。その結果「構造有限性」という極めて重要な函数族を発見するに至った。この族は、上記の有限生成クライン群と有理函数の与える力学系の類似性を間違いなく考えうるもの、すなわち同じサリバンの辞書の項目、として辞書自身の補強が可能になる族であるという予想を越えた発見をもたらした。特にその帰結の一つとして、任意の構造有限な超越整函数は常にハウスドルフ次元が2のジュリア集合を持つことが証明できた。また上研究の分担者の木坂氏によっても構造有限な整函数の力学系的性質がいくつか明らかにされた。さらに、ごく最近になって、分岐被覆構造の表現空間としてのフルビッツ空間の重要性に着目し、ベルの予想を肯定的に解決することに成功したことも特記に値する成果である。

  • フラクタルな境界を持つ領域でのポテンシャル論

    科学研究費助成事業(お茶の水女子大学)  科学研究費助成事業(基盤研究(C))

    研究期間:

    1999年
    -
    2001年
     

    渡辺 ヒサ子, 前田 ミチヱ, 松崎 克彦, 竹尾 富貴子, 吉田 英信

     概要を見る

    フラクタルな境界を持つ領域Dで境界値問題を考えるときは、境界上の積分で定義されたベゾフノルムに関してある作用素Kが有界であることを証明しなければならないことが、しばしば起こる。作用素Kの有界性を証明する方法として、境界関数を一定の方法で領域Dの内外部まで拡張し、Dが一様領域という仮定のもとに、境界上の関数fのノルムをDの内部の積分で定義された分量で押さえ、その量を、D内の|∇f|と、境界までの距離の適当なべき(境界のフラクタル度に関係した)との積のp乗の体積積分で上からおさえ、作用KをDの外部から内部への(または逆向きの)写像Fに置き換え、Fの有界性を証明することに帰着させる。そして、異なった空間の間の極大関数を使うことで、Fの有界性を証明することができることがわかった。
    この方法で、Dirichlet問題を2重層ポテンシャルを使用して解くために必要な作用素の有界性を証明した。

  • クライン群の離散表現の集合の構造

    日本学術振興会  海外特別研究員

    研究期間:

    1997年10月
    -
    1999年09月
     

    松崎克彦

  • クライン群の変形理論

    お茶の水女子大学  科学研究費 基盤研究(C)

    研究期間:

    1997年04月
    -
    1999年03月
     

    渡辺ヒサ子

     概要を見る

    松崎は、クライン群による点の軌道の集積集合である極限集合(フラクタル集合)のハウスドルフ次元の評価を双曲多様体の幾何学的定数を用いて行い、n次元双曲的離散群の極限集合のハウスドルフ次元がnより小さいための条件を、対応する双曲多様体の幾何学的性質で記述した。さらにクライン群を変形させたときのハウスドルフ次元の連続性について考察した。また、パラメーター空間のなかで離散表現の集合の構造を解析したが、そのうちもっとも典型的な擬フックス群空間を考える際、リーマン面上の斜影構造の空間からのホロノミー写像を使ってその形状を調べる方法を提案した。さらに、クライン群に代数的に微少変形を与えたときの群としての構造の安定性に関する結果と、擬等角変形空間のなかの代数的位相とタイヒミュラー位相の同値性に関する結果を示した。
    谷口は、整函数の力学系の変形理論を、タイヒミュラー空間論の立場から構築した。また、有理函数では現れない、wandering domainsやBaker domainsの基本的性質を、このような視点から明らかにした。また具体的な力学系の考察として,象眼指数函数族を集中的に調べ、その位相的完全性を示すことに成功し、さらにその対数的持ち上げの分岐を考察してそのファトウ成分のタイヒミュラー空間を明らかにした。
    渡辺は、フラクタルな境界を持つ領域で、Direclet問題に関連した作用素KのBesov空間上の有界性について考察し、全空間上のリプシッツ関数に対しては、境界上のBesovノルムを、その関数の偏微分と境界からの距離の適当なべき乗の内部または外部の積分で評価できることを示し、Hormander型の極大関数の理論を使うことにより、境界がフラクタルな場合にも作用素KがあるBesov空間\で有界であることを証明した。

  • クライン群と複素力学系の研究

    お茶の水女子大学  科学研究費 奨励研究(A)

    研究期間:

    1996年04月
    -
    1997年03月
     

    松崎克彦

     概要を見る

    本研究では、リマーン球面上の正則函数の力学系を扱う複素力学系の理論のうち、正則自己同相離散群(クライン群)を中心にとりあげ、擬等角写像の理論、タイヒミュラー空間論、双曲幾何学を使いながら、軌道の集積集合である極限集合に現われる自己相似的機構(フラクタル)のトポロジーとハウスドルフ次元の解析を行なった。BishopとJonesは有限生成クライン群の極限集合のハウスドルフ次元が2であるための必要十分条件は、クライン群が幾何学的有限ではないことであることを証明したが、そこでは、双曲的多様体のラプラシアンの最小固有値とポアンカレ級数の収束指数との関係、さらに等周不等式やCheeger定数、ブラウン運動の衝突確率など、群に対応する幾何学的対象上での微分幾何が有力であることがでは再認識された。本研究では彼らの方法を踏襲しながら逆に、無限型n次元双曲的離散群の極限集合のハウスドルフ次元がnより小さいための条件を、対応する双曲的多様体の幾何学的性質で記述した。具体的には、多様体の凸核のその境界からの距離によりハウスドルフ次元が評価できることを証明した。また凸核内に、境界から遠くても無視できる領域が設定できることがわかり、より精密な評価と、適用できる範囲が広がった。今後は、このような幾何学的量はクライン群の幾何学的収束に関し連続に変化するので、その評価を精密にし、系に摂動を与えたときの極限集合のハウスドルフ次元の変化を調べる予定である。

  • 自己相似確率過程の研究

    科学研究費助成事業(お茶の水女子大学)  科学研究費助成事業(基盤研究(B))

    研究期間:

    1996年
    -
    1997年
     

    笠原 勇二, 成田 希世子, 松崎 克彦, 吉田 裕亮, 金子 晃, 竹尾 富貴子, 高村 幸男

     概要を見る

    ・自己相似確率過程の典型であるfractional Brownian motionについて滞在時間の関数型極限定理を研究した。通常の線形な正規化では極限の確率過程が退化してしまうが、時間軸を対数目盛りで考えるとextremal processの逆過程が現れることを証明した。
    ・上記の結果をより一般の正規確率過程について、潜在時間が緩変動しているようなある種のクラスにおいても同様な極限定理が成り立つことを証明した。
    ・fractional Brownian motionの局所時間のパラメータに関する漸近挙動の研究を行った。(指数)×(次元)が1に近づくとき、1次元分布は指数分布に近づくが、確率過程としては自己相似性の指数が丁度1に成るような非線形の時間変更を行うと特異極限にextremal processの逆過程が現れることを示した。
    ・関数族に対する不変集合は、自己相似性をもっているが、この位相的性質についての研究を行った。
    ・セルオートマトンの極限集合の存在について、遷移規則との関係および、関数解析的アプローチによる存在に関する研究を行った。

  • リーマン面のスペクトル理論

    日本学術振興会  特定国派遣研究員

    研究期間:

    1995年04月
    -
    1995年09月
     

    松崎克彦

  • 双曲的多様体の剛性と離散群のエルゴード性の研究

    東京工業大学  科学研究費 奨励研究(A)

    研究期間:

    1994年04月
    -
    1995年03月
     

    松崎克彦

     概要を見る

    低次元トポロジー、擬等角写像の理論、タイヒミュラー空間論、双曲幾何学を使いながら、双曲的3次元多様体の剛性定理、離散群の極限集合上の作用のエルゴード性の研究、リーマン面のタイヒミュラー空間および射影構造の研究に関して成果をあげた。[1]では、リーマン面の射影構造を、展開写像のSchwarz微分により正則2次微分の空間として表現するときのいくつかの注意をあたえた。[2]では、グリーン函数を持たないような双曲的リーマン面に対応するフックス群の特徴づけに関するレビューをした。フックス群のMostow剛性についてのAstala-Zinsmeisterの定理の簡単な証明も紹介している。[3]では、非定数有界調和函数を許容しないリーマン面を、その正規被覆に対応するフックス群の保存性に関する条件で特徴づけた。[4]では、リーマン面のタイヒミュラー空間を普遍タイヒミュラー空間内に実現したとき、面積有限なリーマン面のタイヒミュラー空間の埋め込みが基点の変化に対して離散的であることを証明した。[5]では、有限型リーマン面の射影構造で展開写像が被覆となっている表現に対して、モノドロミ-表現の核が一致するとき、それらの表現は展開写像の像の間の等角写像で共役の関係にあるという基本定理を証明した。[6]では、有限生成クライン群間の代数的同型が幾何学的に誘導されるためのシャープな条件を与えている。但し、論文の番号は上の表に並べた順番にふられている。

  • 双曲的三次元多様体とクライン群

    東京工業大学  科学研究費 奨励研究(A)

    研究期間:

    1993年04月
    -
    1994年03月
     

    松崎克彦

     概要を見る

    以下の主題において新しい結果が得られ、研究が発展中である。
    1.アールフォルス-ベアスの普遍タイヒミュラー空間T(1)は等質的な解析的バナッハ多様体であり、コンパクトリーマン面のタイヒミュラー空間はここに埋め込まれている。コンパクトリーマン面のタイヒミュラー空間はこれまで数多くの研究者によって研究され、応用されてきたが、T(1)および無限次元タイヒミュラー空間の理論は最近になってようやく発展してきた。特にDiff(S)の解析的ケーラー多様体としての埋め込みは、超弦理論におけるloop-spaceの相空間と考えられるもので興味深い。そこでその基礎理論として、T(1)の中でDiff(S)およびタイヒミュラー空間がどのように埋め込まれているかを研究した。Diff(S)はコンパクトリーマン面のタイヒミュラー空間と横断的に交わることの別証明と、タイヒミュラー空間の埋め込みが基点の変化に離散的であることの証明を得た。
    2.有限生成クライン群GのPSL(2,C)表現空間を考える。Gが構造安定であるとは、恒等表現の近傍がすべて同型写像からなるときをいう。サリバンはねじれのないGに対し構造安定性の必要十分条件を与え、その力学系は極限集合上で拡張性をもつことを示したが、筆者はこれをねじれを許す場合に拡張し、さらに擬等角安定性が幾何学的有限性と同値であることを証明した。また、有限型リーマン面の射影構造のモノドロミ-表現空間においては、射影構造の展開写像が被覆となっている表現全体を考え、その孤立点と連結成分に関する結果を得た。

  • 多様体上の複素解析

    科学研究費助成事業(東京工業大学)  科学研究費助成事業(一般研究(C))

    研究期間:

    1992年
     
     
     

    吹田 信之, 野田 洋二, 松崎 克彦, 志賀 啓成, 辻 元, 野口 潤次郎

     概要を見る

    本研究において、代表者は、解析関数の特異性に関するRadsの定理を考察し、見通しのよい証明を得た。また解析関数のつくる関数空間について 志賀啓成は、軍位円枝で知られていた調和H_1空間とBMO空間の双対性関係を、Parabolie endを持つリーマン面に拡張した。さらに、有限な境界付リーマン面について、解析関数のH_1空間とBMO空間の双対性を考察し、さらに境界値関数が、リーマン面上のH_1関数の境界値となるための条件をみちびいた。松崎克彦は、双曲的離散群について、無限境球面上での作用が、エルゴード成分を持たないが、保存的にならない例を任意次元で構成した。また、クライン群について、幾何学的有限性、擬等角安定性、Bers写像の全射性の三つの性質の同値性を調べた。さらにフックス群が発散的であるための条件を、その正規部分群の性質で与え、またフックス群の作用のエルゴード成分が擬等角変形で保たれない例を構成した。この他タイヒミュラー空間の境界に関連する興味深い群を構成した。野田洋二は射影空間内の正則曲線の剛性定理を研究し、曲線が代数的に退化する様子を、除外集合を利用して考察し、いくつかの有用な結果を得、さらにそのような正則曲線の形を決定した。野口潤次郎は、双曲的多様体に関する2つのラング予想を解決し、これにより双曲的多様体への正則写像のモジュライ空間の構造を明らかにし、また同じ多様体に関する関数体上のMordell予想の解決を得た。さらに、双曲的幾何学と値分布理論に関する新しい関数の提起を行った。
    今後の展開としては、Rado型定理に現れる除外集合の必要性、ハーディ空間の数値け量の研究、解析写像の剛性、有限性の研究などが考えられる。

  • 複素構造の解析学的・幾何学的研究

    科学研究費助成事業(東京工業大学)  科学研究費助成事業(一般研究(B))

  • 複素多様体からの群の表現の解析

    科学研究費助成事業(東京工業大学) 

  • 数理物理学における諸問題の研究

    科学研究費助成事業(東京大学)  科学研究費助成事業(一般研究(A))

  • 幾何学的複素解析とポテンシャル論

    科学研究費助成事業(東京工業大学)  科学研究費助成事業(総合研究(A))

▼全件表示

Misc

  • 書評 L.V.アールフォルス(谷口雅彦訳) : 擬等角写像講義,数学クラシックス,29,丸善出版,2015年,168ページ

    松崎 克彦

    数学   72 ( 1 ) 94 - 98  2020年  [査読有り]  [招待有り]

    書評論文,書評,文献紹介等  

    CiNii

  • 無限次元タイヒミュラー空間の問題 (複素幾何学の諸問題)

    松崎 克彦

    数理解析研究所講究録   1731   28 - 39  2011年03月

    CiNii

  • Appendix G. The Denjoy-Wolff theorem

    Katsuhiko Matsuzaki

    Early Days in Complex Dynamics: A History of Complex Dynamics in One Variable During 1906-1942, American Mthematical Society     303 - 305  2011年  [招待有り]

    記事・総説・解説・論説等(その他)  

  • Appendix D. Kleinian groups

    Katsuhiko Matsuzaki

    Early Days in Complex Dynamics: A History of Complex Dynamics in One Variable During 1906-1942, American Mthematical Society     295 - 296  2011年  [招待有り]

    記事・総説・解説・論説等(その他)  

  • Structure theorem for holomorphic self-covers of Riemann surfaces and its applications (Infinite dimensional Teichmuller spaces and moduli spaces)

    FUJIKAWA Ege, MATSUZAKI Katsuhiko, TANIGUCHI Masahiko

    数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu   17   21 - 36  2010年06月  [査読有り]

    CiNii

  • An averaging operator and non-separability of certain Banach spaces of holomorphic automorphic forms (Infinite dimensional Teichmuller spaces and moduli spaces)

    MATSUZAKI Katsuhiko

    数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu   17   65 - 72  2010年06月  [査読有り]

    CiNii

  • Properties of asymptotically elliptic modular transformations of Teichmuller spaces (Infinite dimensional Teichmuller spaces and moduli spaces)

    MATSUZAKI Katsuhiko

    数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu   17   73 - 84  2010年06月  [査読有り]

    CiNii

  • The projection of limit sets of modular groups on asymptotic Teichmüller spaces

    E. Fujikawa, K. Matsuzaki

    Proceedings of the 16th ICFIDCAA, Dongguk Univ., Daeyang Printing     86 - 92  2009年

    記事・総説・解説・論説等(国際会議プロシーディングズ)  

  • An example of self-covering of Riemann surface

    K. Matsuzaki, Y. Yabuki

    Proceedings of the 16th ICFIDCAA, Dongguk Univ., Daeyang Printing     86 - 92  2009年

    記事・総説・解説・論説等(国際会議プロシーディングズ)  

  • ポアンカレと非ユークリッド幾何学 (特集 ポアンカレ--知の巨人が放った創造性の至宝)

    松崎 克彦

    数理科学   46 ( 10 ) 18 - 24  2008年10月

    CiNii

  • A remark on quadratic differentials vanishing at infinity(Complex Analysis and Geometry of Hyperbolic Spaces)

    松崎 克彦

    数理解析研究所講究録   1518   144 - 145  2006年10月

    CiNii

  • 正則自己被覆が誘導するタイヒミュラー空間上の力学系

    藤川 英華, 松崎 克彦, 谷口 雅彦

    数理解析研究所講究録   1494   44 - 48  2006年05月

    CiNii

  • 微小時間の無限大/レビュー『博士の愛した数式』 (特集 美しき数式の世界)

    松崎 克彦

    数学セミナー   45 ( 2 ) 42 - 45  2006年02月

    CiNii

  • 函数論的クライン群論が残したもの (特集 サーストン・プログラムと双曲幾何)

    松崎 克彦

    数学セミナー   44 ( 3 ) 22 - 25  2005年03月

    CiNii

  • 擬対称写像とタイヒミュラーモジュラー群

    松崎 克彦

    総合講演・企画特別講演アブストラクト   2005 ( 0 ) 41 - 50  2005年  [招待有り]

    DOI CiNii

  • Dynamics of Teichmuller modular groups and general topology of moduli spaces : Announcement (Perspectives of Hyperbolic Spaces II)

    松崎 克彦

    数理解析研究所講究録   1387   81 - 94  2004年07月

    CiNii

  • An extension of the collar lemma (Perspectives of Hyperbolic Spaces)

    松崎 克彦

    数理解析研究所講究録   1329   58 - 61  2003年06月

    CiNii

  • The action of isotropy subgroups of the modular groups on infinite dimensional Teichmuller spaces (Hyperbolic Spaces and Discrete Groups II)

    松崎 克彦

    数理解析研究所講究録   1270   84 - 87  2002年06月

    CiNii

  • Locally connected tree-like invariant continua under Kleinian groups (Hyperbolic Spaces and Discrete Groups)

    松崎 克彦

    数理解析研究所講究録   1223   31 - 32  2001年07月

    CiNii

  • LOCAL GEOMETRIC FINITENESS OF KLEINIAN GROUPS (Hyperbolic Spaces and Related Topics II)

    松崎 克彦

    数理解析研究所講究録   1163   42 - 45  2000年07月

    CiNii

  • クライン群の力学系 : 極限集合のハウスドルフ次元

    松崎 克彦

    数学   51 ( 2 ) 142 - 160  1999年04月  [査読有り]  [招待有り]

    DOI CiNii

  • C. T. McMullen氏の業績

    松崎 克彦

    数学   51 ( 2 ) 186 - 188  1999年04月  [査読有り]  [招待有り]

    CiNii

  • A remark on the critical exponent of Kleinian groups (Analysis and Geometry of Hyperbolic Spaces)

    松崎 克彦

    数理解析研究所講究録   1065   106 - 107  1998年10月

    CiNii

  • クライン群の幾何学的収束と極限集合のハウスドルフ次元 (複素力学系の諸問題)

    松崎 克彦

    数理解析研究所講究録   1042   176 - 190  1998年04月

    CiNii

  • Conditional stability of Kleinian groups

    松崎 克彦

    Science bulletin of Josai University, Special Issue   4   25 - 28  1998年

     概要を見る

    NLA97 : Complex Dynamical Systems : The Second Symposium on Non-Linear Analysis and its Applications. / Edited by KIYOKO NISHIZAWA. 29-31 May 1997. The Conference Hall, MIZUTA Memorial Library Josai University.

    DOI CiNii

  • Stability of Kleinian groups(Analysis of Discrete Groups II)

    松崎 克彦

    数理解析研究所講究録   1022   87 - 92  1997年12月

    CiNii

  • ユナボマ-の数学

    松崎 克彦

    数学セミナ-   36 ( 4 ) 44 - 46  1997年04月

    CiNii

  • THE RATIO OF TWO NORMS OF QUADRATIC DIFFERENTIALS(Analysis of Discrete Groups)

    松崎 克彦

    数理解析研究所講究録   967   117 - 120  1996年10月

    CiNii

  • Circle packing のリーマン写像への収束(Circle Packingの幾何学)

    松崎 克彦

    数理解析研究所講究録   893   24 - 35  1995年01月

    CiNii

  • Circle Packing の変形空間のパラメーター(Circle Packingの幾何学)

    松崎 克彦

    数理解析研究所講究録   893   70 - 79  1995年01月

    CiNii

  • SEVERAL CHARACTERIZATIONS OF FUCHSIAN GROUPS OF DIVERGENCE TYPE(Complex Analysis on Hyperbolic 3-Manifolds)

    MATSUZAKI KATSUHIKO

    数理解析研究所講究録   882   51 - 56  1994年08月

    CiNii

▼全件表示

 

現在担当している科目

▼全件表示

 

他学部・他研究科等兼任情報

  • 理工学術院   大学院基幹理工学研究科

特定課題制度(学内資金)

  • 離散群の指数増大度に関する不等式と剛性の研究

    2020年   ヨハネス イェーリッシュ

     概要を見る

     本研究では,双曲性をもつ離散群の指数増大度を,擬等角不変測度の Patterson-Sullivan 理論とマルコフ連鎖の群拡張の熱力学形式の理論から解明し,クライン群などに現れる増大度剛性と余増大度剛性の双対性に理論的背景を与えることを目的としていた.とくに増大度と余増大度の間のある不等式の証明をめざしたが,今年度の研究ではその予備的な考察までしか進まなかった. 並行しておこなったより古典的な双曲離散群に関連する研究として,クライン群の Myrberg 極限集合のハウスドルフ次元と無限生成ショットキー群で一意化されるリーマン面については具体的な結果が得られた.

  • タイヒミュラー空間上の不変計量の構成と応用

    2019年   Huaying WEI

     概要を見る

    (1)実軸上のVMOタイヒミュラー空間を構成する強対称写像について,それ自身および逆写像の一様連続性を仮定すればその全体は群構造をもち,また退化Carleson 測度を誘導するような上半平面上の擬等角写像に拡張することが証明された.(2)実軸上の漸近的等角写像のタイヒミュラー空間の概念を一般化し,区分的な対称写像による空間を普遍タイヒミュラー空間の閉部分空間として定式化した.これらの空間の増大列による普遍タイヒミュラー空間を補間する結果および商空間の構成を得た.計量については,商空間の複素構造を定義し,商フィンスラー計量を与えた.また,小林計量とタイヒミュラー計量の比較について,先行研究の方法では解決しない問題点を提示した. 

  • ケーリーグラフの等長変換群の収束指数と重みが変動する離散ラプラシアンのスペクトル

    2017年   ヨハネス イェーリッシュ

     概要を見る

    自由群のケーリーグラフへの部分群の等長的作用に関する収束指数と,商グラフ上の離散ラプラシアンのスペクトルの底との間には Grigorchuk の余増大公式という関係がある.同様の結果は,双曲空間に作用するクライン群の収束指数と双曲多様体上のラプラシアンに対しても Sullivan らにより証明されたが,共通する点は,ココンパクトな群の収束指数の1/2で相転移が起こることである.本研究では,自由群のケーリーグラフの辺の長さを変動させた場合にも,部分群の収束指数に依存して定まる重み付きの離散ラプラシアンに対して,そのスペクトルの底との間に余増大公式の一般化が証明され,収束指数の1/2での相転移も確かめられた.

  • 無限次元タイヒミュラー空間上の計量と等長変換群の研究

    2014年  

     概要を見る

    (1) ヘルダー連続微分をもつ円周の微分同相写像のタイヒミュラー空間を定義し,ベルトラミ微分のノルムから誘導される位相と微分同相写像のノルムから誘導される位相が同値であることを示した.(2) 単位円板上の p 乗可積分タイヒミュラー空間にフィンスラー計量を定義し,完備性およびタイヒミュラー計量との関係を考察した.(3) それそれのタイヒミュラー空間の複素構造に関する双正則自己同相写像,計量に関する等長写像,および標準的な基点変換写像の間の関係についての問題を定式化した.

  • 離散群上の有界関数空間における幾何学的群論の新展開

    2011年  

     概要を見る

     群論における Hopf の問題は,群の自己全射準同型が単射となる条件を問い,co-Hopf 問題は自己単射準同型が全射となる条件と問うている.本研究課題では自己共役に関する co-Hopf 問題について考察した.双曲空間に作用する等長変換群の離散部分群(クライン群)に関して既に得られていた結果を,より一般にグロモフ双曲空間の等長変換からなる離散群に対して拡張した.証明には双曲空間の無限遠境界の極限集合上の群作用で不変な擬等角測度を用いた.このような擬等角測度は Coornaert により導入されたもので,クライン群に関する Patterson-Sullivan 測度の一般化と考えられる.研究ではまず,Patterson-Sullivan 測度について成立していた結果を擬等角不変測度についても拡張することからはじめた.とくに群作用のエルゴード性と擬等角不変測度の一意性についての結果を整理した.さらに群に対して定義されるポアンカレ級数が収束指数次元において発散する場合(発散型),このような擬等角不変測度の強い意味での一意性が成り立つことを示せたことが議論の大きな展開を可能にした.証明の方法は Tukia のクライン群に関する同様の結果の証明に習い,発散型であれば conical な極限集合上で擬等角不変測度が正の測度をもつことを示した. 応用として次の2点が挙げられる.双曲群はそのケーリーグラフがグロモフ双曲空間となる群であり,上記の議論を直接適用できる.したがって双曲群の自己共役に関する co-Hopf 問題について新たな知見を加えることができる.別の応用としては,上記の証明の過程でしめされた次の命題の意義を考えることがある.「グロモフ双曲空間の等長変換からなる離散群が発散型であるとき,それを正規部分群として含む離散群もまた発散型で収束指数も一致する.」この命題は,自由群をはじめとして双曲群一般に対する正規部分群の収束指数に関する研究に大きく寄与する可能性をもつ.

  • 無限次元タイヒミュラー空間の不変部分空間の研究

    2010年  

     概要を見る

    無限次元タイヒミュラー空間に作用する写像類群の部分群とその不変部分空間の研究により,円周の同相写像群がメビウス群と共役になるための条件を与える問題に対して一定の成果をみた.普遍タイヒミュラー空間の写像類群は,円周の擬対称写像群と同一視できる.この場合,漸近的タイヒミュラー空間上のファイバーを不変にする部分群が対称写像群である.対称写像群の作用の固定点(不動点)を求める立場から上記の共役問題を考察した.Markovic による基本結果により,写像類群の部分群がタイヒミュラー空間に固定点をもつための必要十分条件は,軌道が有界であることがわかっている.よって有界軌道をもつ部分群に制限し,それが不変にする部分空間内に固定点をもつための条件を定式化した.以前の自身の結果で,対称写像群の部分群一般に対しては固定点の存在は保証されないことはわかっていた.本研究では,対称写像を境界値としてもつ単位円板の擬等角写像の歪曲係数に可積分条件を与え,それをみたす部分群を考えれば,対応する不変部分空間(具体的には可積分な正則2次微分の空間)に固定点をみつけられることに注目した.擬等角写像の歪曲係数の可積分条件は,対称写像自身の滑らかさの条件への対応をもつことが知られている.この関係を精査することにより,たとえば 1+1/2 階より大きい連続微分をもつ円周の微分同相写像群に対して,それがメビウス群と共役となるための条件を記述することが可能になった.この方法をさらに進めることにより,1階より大きな連続微分をもつ微分同相写像群の共役問題に関する予想の解決に向けて,前進が期待できる.今後の課題として継続して研究する予定である.

▼全件表示