菅原 俊治 (スガワラ トシハル)

写真a

所属

理工学術院 基幹理工学部

職名

教授

ホームページ

http://www.isl.cs.waseda.ac.jp/~sugawara/

プロフィール

1982 年早稲田大学大学院理工学研究科数学専攻修士課程修了.同年,日本電信電話公社武蔵野電気通信研究所基礎研究部入所.1992~1993 年,マサチューセッツ大学アマースト校客員研究員.現在,早稲田大学理工学術院基幹理工学研究科情報理工・情報通信専攻教授.知識表現,学習,分散人工知能,マルチエージェントシステム,インターネットなどの研究に従事.博士 (工学).情報処理学会,日本ソフトウェア科学会,電子情報通信学会,人工知能学会,ISOC,IEEE,ACM,AAAI各会員.

兼担 【 表示 / 非表示

  • 理工学術院   大学院基幹理工学研究科

学内研究所等 【 表示 / 非表示

  • 2020年
    -
    2022年

    理工学術院総合研究所   兼任研究員

学歴 【 表示 / 非表示

  •  
    -
    1982年

    早稲田大学   理工学研究科   数学専攻  

学位 【 表示 / 非表示

  • 早稲田大学   博士(工学)

経歴 【 表示 / 非表示

  • 2007年04月
    -
     

    現職

  • 1982年04月
    -
    2007年03月

    NTT研究所

  • 2003年
    -
    2007年

    電気通信大学 非常勤講師

  • 2004年
    -
    2006年

    早稲田大学 非常勤講師

  • 1992年
    -
    1993年

    マサチューセッツ州立大学アムハースト校 客員研究員

全件表示 >>

所属学協会 【 表示 / 非表示

  •  
     
     

    AAAI

  •  
     
     

    IEEE Computer Society

  •  
     
     

    電子情報通信学会

  •  
     
     

    情報処理学会

  •  
     
     

    人工知能学会

全件表示 >>

 

研究分野 【 表示 / 非表示

  • 知能情報学   人工知能、マルチエージェントシステム、機械学習、協調・調整、マルチエージェントシミュレーション

  • 情報ネットワーク

  • ソフトコンピューティング

  • ソフトウェア

研究キーワード 【 表示 / 非表示

  • 計算社会ネットワーク

  • 機械学習

  • マルチエージェントシステム

  • 複雑ネットワーク

  • ソフトコンピューティング

全件表示 >>

論文 【 表示 / 非表示

  • Modeling and analyzing users’ behavioral strategies with co-evolutionary process

    Yutaro Miura, Fujio Toriumi, Toshiharu Sugawara

    Computational Social Networks   8 ( 1 )  2021年03月  [査読有り]  [国際誌]

    担当区分:最終著者

     概要を見る

    <title>Abstract</title>Social networking services (SNSs) are constantly used by a large number of people with various motivations and intentions depending on their social relationships and purposes, and thus, resulting in diverse strategies of posting/consuming content on SNSs. Therefore, it is important to understand the differences of the individual strategies depending on their network locations and surroundings. For this purpose, by using a game-theoretical model of users called <italic>agents</italic> and proposing a co-evolutionary algorithm called <italic>multiple-world genetic algorithm</italic> to evolve diverse strategy for each user, we investigated the differences in individual strategies and compared the results in artificial networks and those of the Facebook ego network. From our experiments, we found that agents did not select the free rider strategy, which means that just reading the articles and comments posted by other users, in the Facebook network, although this strategy is usually cost-effective and usually appeared in the artificial networks. We also found that the agents who mainly comment on posted articles/comments and rarely post their own articles appear in the Facebook network but do not appear in the connecting nearest-neighbor networks, although we think that this kind of user actually exists in real-world SNSs. Our experimental simulation also revealed that the number of friends was a crucial factor to identify users’ strategies on SNSs through the analysis of the impact of the differences in the reward for a comment on various ego networks.

    DOI

  • Distributed Service Area Control for Ride Sharing by using Multi-Agent Deep Reinforcement Learning.

    Naoki Yoshida, Itsuki Noda, Toshiharu Sugawara

    ICAART 2021 - Proceedings of the 13th International Conference on Agents and Artificial Intelligence   1   101 - 112  2021年  [査読有り]

     概要を見る

    We propose a decentralized system to determine where ride-sharing vehicle agents should wait for passengers using multi-agent deep reinforcement learning. Although numerous drivers have begun participating in ride-sharing services as the demand for these services has increased, much of their time is idle. The result is not only inefficiency but also wasted energy and increased traffic congestion in metropolitan area, while also causing a shortage of ride-sharing vehicles in the surrounding areas. We therefore developed the distributed service area adaptation method for ride sharing (dSAAMS) to decide the areas where each agent should wait for passengers through deep reinforcement learning based on the networks of individual agents and the demand prediction data provided by an external system. We evaluated the performance and characteristics of our proposed method in a simulated environment with varied demand occurrence patterns and by using actual data obtained in the Manhattan area. We compare the performance of our method to that of other conventional methods and the centralized version of the dSAAMS. Our experiments indicate that by using the dSAAMS, agents individually wait and move more effectively around their service territory, provide better quality service, and exhibit better performance in dynamically changing environments than when using the comparison methods.

    DOI

  • Effective Area Partitioning in a Multi-Agent Patrolling Domain for Better Efficiency.

    Katsuya Hattori, Toshiharu Sugawara

    ICAART 2021 - Proceedings of the 13th International Conference on Agents and Artificial Intelligence   1   281 - 288  2021年  [査読有り]

     概要を見る

    This study proposes a cooperative method for a multi-agent continuous cooperative patrolling problem by partitioning the environment into a number of subareas so that the workload is balanced among multiple agents by allocating subareas to individual agents. Owing to the advancement in robotics and information technology over the years, robots are being utilized in many applications. As environments are usually vast and complicated, a single robot (agent) cannot supervise the entire work. Thus, cooperative work by multiple agents, even though complicated, is indispensable. This study focuses on cooperation in a bottom-up manner by fairly partitioning the environment into subareas, and employing each agent to work on them as its responsibility. However, as the agents do not monitor the entire environment, the decentralized control may generate unreasonable shapes of subareas; the area are often unnecessarily divided into fragmented enclaves, resulting in inefficiency. Our proposed method reduced the number of small and isolated enclaves by negotiation. Our experimental results indicated that our method eliminated the minute/unnecessary fragmented enclaves and improved performance when compared with the results obtained by conventional methods.

    DOI

  • Analysis of coordinated behavior structures with multi-agent deep reinforcement learning.

    Yuki Miyashita, Toshiharu Sugawara

    Appl. Intell.   51 ( 2 ) 1069 - 1085  2021年  [査読有り]

     概要を見る

    Cooperation and coordination are major issues in studies on multi-agent systems because the entire performance of such systems is greatly affected by these activities. The issues are challenging however, because appropriate coordinated behaviors depend on not only environmental characteristics but also other agents’ strategies. On the other hand, advances in multi-agent deep reinforcement learning (MADRL) have recently attracted attention, because MADRL can considerably improve the entire performance of multi-agent systems in certain domains. The characteristics of learned coordination structures and agent’s resulting behaviors, however, have not been clarified sufficiently. Therefore, we focus here on MADRL in which agents have their own deep Q-networks (DQNs), and we analyze their coordinated behaviors and structures for the pickup and floor laying problem, which is an abstraction of our target application. In particular, we analyze the behaviors around scarce resources and long narrow passages in which conflicts such as collisions are likely to occur. We then indicated that different types of inputs to the networks exhibit similar performance but generate various coordination structures with associated behaviors, such as division of labor and a shared social norm, with no direct communication.

    DOI

  • Multi-Agent Task Allocation Based on the Learning of Managers and Local Preference Selections.

    Yuka Ishihara, Toshiharu Sugawara

    Procedia Computer Science   176   675 - 684  2020年  [査読有り]

     概要を見る

    This paper discusses an adaptive distributed allocation method in which agents individually learn strategies for preferences to decide on the rank of tasks which they want to be allocated by a manager. In a distributed edge-computing environment, multiple managers that control the provision of a variety of services requested from different locations have to allocate the corresponding tasks to appropriate agents, which are usually programs developed by different companies. In our proposed method, each agent learns which manager will allocate tasks it performs well and how to declare its preferred tasks. We experimentally evaluated the proposed learning method and showed that agents using the proposed method could effectively execute requested tasks and could adapt to changes in patterns of the requested tasks.

    DOI

全件表示 >>

書籍等出版物 【 表示 / 非表示

  • PRIMA 2012: Principles and Practice of Multi-Agent Systems

    Iyad Rahwan, Wayne Wobcke, Sandip Sen, Toshiharu Sugawara

    Springer (LNCS/LNAI 7455)  2012年09月 ISBN: 9783642327292

  • Indirect Coordination Mechanism of MAS (book chapter in "Multiagent Systems")

    Satoshi Kurihara, Kensuke Fukuda, Shinya Sato, Toshiharu Sugawara

    IN-TECH  2009年02月 ISBN: 9783902613516

  • Massively Multi-Agent Technology

    Nadeem Jamali, Paul Scerri, Toshiharu Sugawara

    Springer (LNCS)  2008年08月 ISBN: 9783540854487

  • How Collective Intelligence Emerge in the Standard Minority Game, (book chapter)

    Satoshi Kurihara, Kensuke Fukuda, Toshio Hirotsu, Osamu Akashi, Toshiharu Sugawara

    The Complex Networks of Economic Interactions Essays in Agent-Based Economics and Econophysics, Lecture Notes in Economics and Mathematical Systems, Springer  2006年 ISBN: 3540287264

  • Multi-Agent Human-Environment Interaction Framework for the Ubiquitous Environment, (book chapter)

    Satoshi Kurihara, Kensuke Fukuda, Toshio Hirotsu, Shigemi Aoyagi, Toshihiro Takada, Toshiharu Sugawara

    Massively Multi-Agent Systems I, Springer  2005年07月

全件表示 >>

Misc 【 表示 / 非表示

  • 深層強化学習を用いた分散協調探索問題における記憶情報による情報補完とその効率化

    山崎天, 菅原俊治

    電子情報通信学会技術研究報告   118 ( 492(AI2018 53-59)(Web) ) 13‐18 (WEB ONLY)  2019年03月

    J-GLOBAL

  • マルチエージェント巡回問題における効果的な領域分割配置による効率化

    服部克哉, 杉山歩未, 菅原俊治

    情報処理学会研究報告(Web)   2019 ( ICS-194 ) Vol.2019‐ICS‐194,No.1,1‐8 (WEB ONLY)  2019年03月

    J-GLOBAL

  • 巡回問題における能力の異なる複数エージェントの自律的な行動決定手法

    岩田裕登, 杉山歩未, 菅原俊治

    情報処理学会研究報告(Web)   2019 ( ICS-194 ) Vol.2019‐ICS‐194,No.2,1‐8 (WEB ONLY)  2019年03月

    J-GLOBAL

  • Cooperative Behavior on Limited Resource Using Deep Reinforcement Learning in Multi-Agent System

    Yining Li, 菅原俊治

    情報処理学会研究報告(Web) 行動変容と社会システム   5  2019年03月

    機関テクニカルレポート,技術報告書,プレプリント等  

  • カメラを用いたエレベータ群管理システムにおける一般乗客と優先対象者の待ち時間公平化

    山内 智貴, 井手 理菜, 菅原 俊治

    人工知能学会全国大会論文集   2019 ( 0 ) 4N3J702 - 4N3J702  2019年

     概要を見る

    <p>本研究では占有量を考慮した優先対象者モデルをエレベータ制御モデルに導入し, カメラを用いて取得した人数・占有量情報を利用したエレベータ制御を提案する. これにより全乗客の平均待ち時間の短縮化と一般乗客・優先対象者間の待ち時間の公平化を目的とする. 建物の高層化に伴い, エレベータは垂直輸送の手段として必要不可欠な存在である. 特にベビーカーや車椅子を利用する優先対象者はエスカレータや階段を用いた垂直移動が困難であるため, エレベータの必要性が非常に高い. しかし優先対象者は他の一般乗客と比較して乗車に必要なスペースが大きく, 空きスペースがわずかだと乗車できず長時間待たされることがある. 結果, 両者間には待ち時間に関する不公平が生じる. 近年ではバリアフリーデザインへの関心の高まりから優先エレベータの設置が増加しているが, 現状では人的な協力による改善をうながすものであり, それだけでは問題の根本的な解決は難しい. 本研究ではこの問題をエレベータの制御によって改善する. シミュレーション実験の結果から提案手法によって全乗客の待ち時間を短縮しつつ, 一般乗客・優先対象者間の待ち時間の公平性を改善することを示した.</p>

    DOI CiNii

全件表示 >>

受賞 【 表示 / 非表示

  • 優秀論文賞 JAWS2018

    2018年09月   Joint Agent Workshops and Symposium 2018   Deep Q Netwokを用いたマルチエージェントの分散協調探索問題における分業の創発  

  • 第22回研究論文賞

    2018年08月   日本ソフトウェア科学会   DNSグラフ上でのグラフ分析と脅威スコア伝搬による悪性ドメイン特定  

  • 優秀論文賞 JAWS2015

    2015年10月   Joint Agent Workshops and Symposium 2015   グループワークにおける信頼ネットワークに基づく公平な相互評価法の提案  

    受賞者: 芝夢乃, 菅原俊治

  • Best paper award, ACM SAC 2015

    2015年04月   ACM SAC   Meta-Strategy for Cooperative Tasks with Learning of Environments in Multi-Agent Continuous Tasks  

  • 優秀論文賞 JAWS2014

    2014年10月   Joint Agent Workshops and Symposium 2014   マルチエージェント巡回清掃における未知環境下での自律的な戦略の学習  

    受賞者: 杉山歩未, 菅原俊治

全件表示 >>

共同研究・競争的資金等の研究課題 【 表示 / 非表示

  • エージェントの自律的組織化学習アルゴリズムとシステム効率化の実現

    基盤研究(B)

    研究期間:

    2020年04月
    -
    2024年03月
     

    菅原 俊治

  • 分業の創発とそれを活用した人工物システムの持続可能性向上の追求

    基盤研究(B)

    研究期間:

    2017年07月
    -
    2021年03月
     

    菅原 俊治

     概要を見る

    情報通信・センサ等のデバイス・機械技術の発展により、実世界をモニタし人間の活動の補助、安全安心の実現をめざしたシステムが導入され始め、今後も多くの応用が期待される。しかし環境のモニタリングによる大量の情報とイベントに基づき、それを実時間で処理する必要がある。これには、多数の計算機や制御プログラムを連携・協調させる技術が重要になる。さらに、人間社会に融合したシステムには、故障とシステム更新を想定した頑健性と持続可能性を実現する技術が必須となる。
    システムの自律的連携の学術的研究は、人工知能(AI)の分野では、ソフト・ハードウェアをエージェントとモデル化し、それらの分業と協調による効率化として提案されてきた。しかし、分業を自律的に創発させ、その最適化やチーム組織化をめざした研究、複数の構成要素からなる「人工物システム」の持続可能性を視野に入れた研究は見られない。特に、社会で継続的に機能させるために、システムの機能の停止や変動を最小限に抑えながら入替え・更新を実現する手法が重要と考えるが、ここでは分業の機能を活用してシステム持続可能性の向上を追求する。
    本研究期間では、昨年度取りかかった「適切な分業を創発させるアルゴリズムの考案と作業の効率化」を進めた。特に本年度では「分業行動戦略学習」の一部として、自らの行動と類似行動を学習したエージェントを同定する試みを開始した。これは定期的な停止を実現するための布石と考える。また次の研究項目であるである、「チーム構造の再構成による公平化と機能追求」も開始した。具体的には、簡単な交渉による分業の明確化・効率化を実現した。これらの初期結果をまとめ、抽象化したマルチエージェント巡回問題の成果として投稿し、採録された(掲載年月は未定)。同時に、分業の他の方法でもある担当領域の分割を決めた後に行動する手法についても着手した。

  • マルチスケールSDNのための制御ソフトウェアの基礎研究

    基盤研究(C)

    研究期間:

    2015年04月
    -
    2018年03月
     

    廣津 登志夫, 藤田 悟, 菅原 俊治, 福田 健介

     概要を見る

    本研究では、現在、主に単一のサービス基盤の制御に使われているSDN技術を、複数の利用者ネットワークが重畳するマルチテナント環境や大規模なネットワーク等の多様なレベル(マルチスケール)のサービス基盤の管理・運用に適用可能とすることを目指している。
    具体的には、各テナントがSDN技術で制御するデータセンタ・クラウドのネットワークをSDN基盤上に効率的に重畳させる技術や、大規模ネットワークの柔軟な制御機構としてSDN技術によるサイバー攻撃対処の機構を実現した。本研究の成果により、これまで管理レベルの技術であったSDNによる柔軟な制御の恩恵をユーザレベルネットワークもが受けることができるようになる。

  • マルチエージェントシステムにおける自律的組織化と割当問題の効率化の相互作用の研究

    基盤研究(B)

    研究期間:

    2013年04月
    -
    2017年03月
     

    菅原 俊治, 栗原 聡, 廣津 登志夫, 福田 健介, 山本 仁志

     概要を見る

    本研究では、異なる能力を持つ多数のエージェントが処理を通じて自律的にグループを構成して、その中で適切なリソース/タスクを配分することで、効率的かつ全体の能力を最大限に引出す分散割当法を提案し、その評価とエージェント間の相互作用を調査した。特に本研究では、エージェントが構成するチームと利益配分、タスクの割り当ての関係を抽象化した繰り返しゲームとして表現し、エージェントの行動戦略と学習により効率向上をさせる制御の解明に注視した。その結果、行動戦略を自律的に学習する手法により、互恵行動による頑健な組織構造を築くこと、またその間を渡歩く合理行動をとるエージェントの混合が、効率をあげることが分かった。

  • 非均質マルチエージェントシステムの競合状況におけるノルムの獲得と維持に関する研究

    研究期間:

    2011年04月
    -
    2014年03月
     

     概要を見る

    本研究では競合状態の秩序をノルムとしてプログラム(エージェント)が習得する手法を提案し、その性質を調べた。このために競合状態を利得行列(戦略の選好と学習報酬)付きのマルコフゲームを用い、競合解消できない行動選択では競合が残り続ける定式化と、一時的には損しても効率的に競合から離脱するノルムを学習できるか調査した。その結果、(1)ノルムを獲得できるが、その質と安定性は利得行列に影響する、(2) 少数の異質のエージェントがノルムの学習自体は阻害しないものの、一度確立されたノルムを壊す現象がある、(3) エージェントにネットワーク構造を導入し、ノルムの変動と局所的なノルムの収束があることを確認した

全件表示 >>

講演・口頭発表等 【 表示 / 非表示

  • 限界効用逓減の法則を考慮したSNSモデルによるレシピ共有SNSの再現のためのパラメータ推定

    三浦 雄太郎, 鳥海不二夫, 菅原俊治

    第15回ネットワーク生態学シンポジウム  

    発表年月: 2018年11月

  • マルチエージェントシステムにおける効率的な競合解消のための社会的慣習の獲得学習の一実験

    菅原 俊治

    第7回ネットワークが創発する知能研究会(JWEIN'11)第52回数理社会学会(JAMS52)合同大会  

    発表年月: 2011年09月

特定課題研究 【 表示 / 非表示

  • 多様性を重視したネットワーク上の共進化アルゴリズムの研究

    2020年  

     概要を見る

    社会的立場でとるべき行動戦略は異なる。たとえば、同じ市場でも大企業と中小企業では、その影響力の差から最適戦略も異なる。マルチエージェントシミュレーションでは、人間やグループを社会の合理的主体(エージェント)と見て、それらに行動を同時学習させ、得られた社会システムの様相を調べることがある。このようなネットワーク解析では遺伝アルゴリズム(GA)がしばしば使われるが、「近隣の最適戦略は自分にも有意義である」を仮定しており、その特殊性や多様性は考慮されない。本研究では、多様性を近隣との共進化過程としてモデル化できる新GAアルゴリズムを提案した。今期は、複雑ネットワーク上でSNSをモデル化したゲームを実行し、その局所的特性(次数、近隣のノードの戦略など)から、戦略の多様性を得られることを確認した。

  • インタラクションを通じて社会的な協調行動をとるマルチエージェントシステムの研究

    2019年  

     概要を見る

    知的な判断を行う自律プログラム(エージェント)が広く社会に使われると、各エージェントは個々の要求に合わせた最適な判断を下すため、実世界では競合が発生し、結果的に最適な判断となないというジレンマが存在する。本研究では、ある種の寛容性に基づくプログラム可能な協調行動を導入し、あるネットワーク構造で結びつくエージェントが近隣とのインタラクションを通して、協調を選択し、それを拡散させる方法を追求している。これに基づき協調期待戦略を提案してきたが、今期は、これがある種のネットワークで非協調者が増えると協調が促進するという非直感的な現象を解析し、スケールフリー性が関与しすることを確認した。

  • 社会的協調を引き出す制御プログラムの提案

    2017年  

     概要を見る

    AIの成果が実システムに適用されつつあるが、現状ではエージェントが自己の最適行動に終始している。しかし、個々の最適行動は相互干渉し、社会的に適切な結果になならないジレンマ的状況が発生する。これはAI技術を広く社会で使うには利己的な効率の追求よりは、エージェントに社会行動を学習させるアルゴリズムを実装し、その学習結果に基づく行動が必須となることを意味する。計算機が「全エージェントの動きを勘案した社会的な協調行動の学習」は、AI技術の社会的応用には必須である。本研究では、特に利己的なエージェントが紛れ込んだときこれを同定し、この相手とは協調行動を取らない手法を追求した。

  • マルチエージェントシステムにおける調和的な共同体の自律生成とアルゴリズムの提案

    2017年  

     概要を見る

     IoTやCPSなど、実データと多数の計算機を組み合わせたチームで実現するサービスは、今後は増加すると思われる。しかし、最適なチーム編成はコストが高く、この課題の解決は急務である。本提案では人間の組織行動に鑑み、多数エージェントが能力を発揮するため、機能・能力を相互に補完しながらもバランスのとれた処理効率を持つエージェント同士の共同体を自律的に形成し、タスクの割当てと実行を共同体内で効果的かつ安定的に実行する自己組織化に基づく制御アルゴリズムを目的とする。本研究助成期間では、特に、システム全体の指標に加えて、自己の特性からシステムに貢献できるタスクの割当希望順位戦略を学習する手法を提案した。

  • 希望順位つき資源の社会利得を最大化する準最適割当てアルゴリズムの提案

    2016年  

     概要を見る

    タスク・資源割当ては基本問題であり、多くの応用がある。特に分散環境での割り当て問題が着目されているが、多くの場合、社会利得の最大化を目指している。他方、サービス利用者は個人や企業であり、それぞれ異なる希望順位を持ち、これが必ずしも共通の効用値とは整合しない。これまで、希望順位を考慮しながら社会利得を最大化する高速な計算方法を提案したが、これを拡張し希望順位を完全に反映できる方法を提案した。これを分散環境でのタスク割当て問題に適用し、(1)動的環境で時々刻々要求が入るタスクの割当てに柔軟に対応できること、 (2)希望順位の要求を各タスク割り当ての時点の段階で十分に反映できることを示した。

全件表示 >>

 

現在担当している科目 【 表示 / 非表示

全件表示 >>

担当経験のある科目(授業) 【 表示 / 非表示

  • 確率・統計概論

    早稲田大学  

  • 情報ネットワーク

    早稲田大学  

  • 人工知能

    早稲田大学, 電気通信大学