Updated on 2025/03/13

写真a

 
TANIGUCHI, Masanobu
 
Affiliation
Faculty of Science and Engineering
Job title
Professor Emeritus
Degree
Doctor of Engineering ( Osaka University )

Education Background

  •  
    -
    1974

    Osaka University   Faculty of Science   Mathematics  

Professional Memberships

  •  
     
     

    日本統計学会

  •  
     
     

    日本数学会

  •  
     
     

    International Statistical Institute

  •  
     
     

    Institute of Mathematical Statistics

Research Areas

  • Applied mathematics and statistics

Research Interests

  • Time series analysis, Mathematical Statistics, Econometrics, Financial Engineering, Information geometry

Awards

  • Analysis Award

    2012.09  

  • Japan Statistical Society Prize

    2004.09  

  • Econometric Theory Award

    2000  

  • Ogawa Prize

    1989  

 

Papers

  • Testing for Granger causality by use of Box-Cox transformations

    小池隆之介, Dou Xiaoling, 谷口正信, Xue Yujie

    ASTE Special Issue on the “Financial & Pension Mathematical Science”   13   17 - 23  2016.03  [Refereed]

  • Asymptotics of realized volatility with non-Gaussian ARCH(∞) microstructure noise

    Hiroyuki Taniai, Takashi Usami, Nobuyuki Suto, Masanobu Taniguchi

    Journal of Financial Econometrics   10 ( 4 ) 617 - 636  2012.09

     View Summary

    In order to estimate the conditional variance of some specific day, the sum of squared intraday returns, as known as "realized volatility" (RV) or "realized variance," is often used. Although this estimator does not converge to the true volatility when the observed price involves market microstructure noise, some subsample-based estimator is known to resolve this problem. In this paper, we will study the asymptotics of this estimator, assuming that market microstructure noise follows a non-Gaussian autoregressive conditional heteroskedastic model of order ∞ (ARCH(∞)). There we elucidate the asymptotics of RV and subsample estimator, which are influenced by the non-Gaussianity and dependent structure of the noise. Some numerical studies are given, and they illuminate interesting features of the asymptotics. © The Author, 2012. Published by Oxford University Press. All rights reserved.

    DOI

    Scopus

    2
    Citation
    (Scopus)
  • JACKKNIFED WHITTLE ESTIMATORS

    Masanobu Taniguchi, Kenichiro Tamaki, Thomas J. DiCiccio, Anna Clara Monti

    STATISTICA SINICA   22 ( 3 ) 1287 - 1304  2012.07  [Refereed]

     View Summary

    The Whittle estimator (Whittle (1962)) is widely used in time series analysis. Although it is asymptotically Gaussian and efficient, this estimator suffers from large bias, especially when the underlying process has nearly unit roots. In this paper, we apply the jackknife technique to the Whittle likelihood in the frequency domain, and we derive the asymptotic properties of the jackknifed Whittle estimator. In particular, the second-order bias of the jackknifed estimator is shown to vanish for non-Gaussian stationary processes when the unknown parameter is innovation-free. The effectiveness of the jackknife technique for reducing the bias of the Whittle estimator is demonstrated in numerical studies. Since the Whittle estimator is applicable in many fields, including the natural sciences, signal processing, and econometrics, the bias-reduced jackknifed Whittle estimator can have widespread use.

    DOI

    Scopus

    3
    Citation
    (Scopus)
  • Generalized information criterion

    Masanobu Taniguchi, Junichi Hirukawa

    JOURNAL OF TIME SERIES ANALYSIS   33 ( 2 ) 287 - 297  2012.03  [Refereed]

     View Summary

    In this article, we propose a generalized Akaike's information criterion (AIC) (GAIC), which includes the usual AIC as a special case, for general class of stochastic models (i.e. i.i.d., non-i.i.d., time series models etc.). Then we derive the asymptotic distribution of selected order by GAIC, and show that is inconsistent, i.e. (true order). This is the problem of selection by completely specified models. In practice, it is natural to suppose that the true model g would be incompletely specified by uncertain prior information, and be contiguous to a fundamental parametric model with dim 0 = p0. One plausible parametric description for g is , h = (h1, ... ,hK - p0) where n is the sample size, and the true order is K. Under this setting, we derive the asymptotic distribution of . Then it is shown that GAIC has admissible properties for perturbation of models with order of , where the length h is large. This observation seems important. Also numerical studies will be given to confirm the results.

    DOI

    Scopus

    7
    Citation
    (Scopus)
  • Robust portfolio estimation under skew-normal return processes

    Taniguchi, M, Petkovic, A, Kase, T, DiCiccio, T.J, Monti, A.C

    The European Journal of Finance   iFirst   1 - 22  2012

▼display all

Books and Other Publications

  • Optimal Statistical Inference in Financial Engineering

    Taniguchi, M, Hirukwa, J, Tamaki, K

    Chapman & Hall  2008 ISBN: 1584885912

  • 数理統計・時系列・金融工学

    谷口 正信

    朝倉  2005

Research Projects

  • Introduction of general causality to various observations and the innovation for its optimal statistical inference

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research

    Project Year :

    2018.06
    -
    2023.03
     

  • Theory for quantile regression inference of time series and its applications

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research

    Project Year :

    2015.04
    -
    2019.03
     

    Taniguchi Masanobu, Hallin Marc, Monti Anna Clara

     View Summary

    (1)We introduced a quantile regression statistic to classify time series data into a certain category. Results show that the misclassification probability of the discriminant statistic converges to zero as the sample size tends to infinity. We applied the proposed method in quantile autoregression to a dataset of the monthly mean maximum temperature at Melbourne.The findings illuminate interesting features of climate change and allow us to check the change at each quantile of the innovation distribution.(2)We considered minimax interpolation and extrapolation problems in Lp for stationary processes. We gave two conditions to find the minimax interpolator and extrapolator in the general framework under the Lp-norm. We showed that there exist minimax interpolator and extrapolator for the class of epsilon contaminated spectral densities.The results (1) and (2) open a new methodology for time serires analysis based on quantile informations for probability and spectral distributions

  • 時系列解析における分位点回帰推測論の構築とその応用

    科学研究費助成事業(早稲田大学)  科学研究費助成事業(基盤研究(A))

    Project Year :

    2015
    -
    2018
     

  • Shrinkage Estimation Theory for Unbiased Estimators of Dependent Observations

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research

    Project Year :

    2014.04
    -
    2017.03
     

    Taniguchi Masanobu

     View Summary

    Introducing a curved probability model,which includes a class of very general nonlinear time series models,we proposed a shrinkage estimator for unknown parameter of the curved probability models. Then we developed the third-order asymptotic estimation theory for the estimator, and provided a sufficient condition for the shrinkage estimator to improve the usualestimators. The results can be applied to the problem of portfolio coefficient estimation. Because the results are very general, we can apply them to a variety of statistical observations generated by multivariate financial time series, multivariate time series regression models and usual mulitivariate models

  • Asymmetric and nonlinear statistical theory and its applications to economics and bioscience

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research

    Project Year :

    2011.04
    -
    2015.03
     

    TANIGUCHI Masanobu, YONEMOTO Kouji, HIRUKAWA Junichi, TAKAGI Yoshiji, HOSHINO Nobuaki, WANG Jin FANG, LIU Qing FENG, NAITO Kanta, SEKIYA Yuri, MATSUDA Shinichi, AKAHIRA Masafumi, TAKEMURA Akimichi, NISHIYAMA Yoshihiko, KANO Yutaka, AMANO Tomoyuki

     View Summary

    We investigated a class of very general stochastic processes with nonlinear dynamics and asymmetric innovation distributions, which can be applied to a varitety of fields e.g., economics, finance, bionics, natural phenomenon etc., as a paradigm model. For them we developed the optimal inference based on LAN, and the empirical likelihood method to a class of stable processes. Shrinked estimation theory has been developed for stochastic processes. The theoretical results have been applied to estimation of portfolios, and the problem of causality. From the applications of the theoretical results, we have got some interesting feedback to mathematical theory. Also, in the process of research, we have raised young researchers

▼display all

Misc

 

Overseas Activities

  • 金融時系列解析の研究

    2012.04
    -
    2013.03

    ベルギー  

    フランス  

    イタリア  

Internal Special Research Projects

  • 高次交差数に基づく最適統計推測理論の構築とその応用

    2017   青嶋 誠

     View Summary

    我々の身の回りに起こる自然現象、社会現象からのデータは、ほとんどが、上昇、下降の動きを表す列で記述される。数学的には現象を記述する確率過程を  がレベル 0 と交差する点の数を D  とする。 微分過程(離散時間の場合は差分過程)のレベル 0 との交差数をを並べた ベクトルを高次交差( Higher Order Crossings (HOC))と呼ぶ。関与の確率過程が定常でスペクトル分布関数 F を持つとき HOC の期待値は F の積分汎関数で表される。HOC 解析の分野では種々の基礎解析がなされているが、統計的最適推測論の構築は極めて未開な状態である。以上を基礎認識として本研究ではスペクトル密度関数がシャープなピークで乱されているとき、HOC の頑健性を通常の Whittle 推定量のそれと比較して前者がある種の頑健性を持つことを示した。

  • 高次元時系列データの数理理論構築とその諸分野への応用

    2013  

     View Summary

    本研究では、高次元データへの統計手法の開発と応用、安定過程に対する統計推測、時系列に対する滑らかでないコントラスト関数による推測理論の構築、従属データに対する経験尤度法の使用、また一般化モーメント法の開発を行った。特に、安定過程に対しては、自己正規化変換をしたピリオドグラムに基づく経験尤度法の提案と経験尤度比や経験尤度推定量の漸近分布の導出を行い、この分野に新しい風を入れた。多次元非正規収益率過程へのポートフォリオ係数の推測についても、高次モーメントに基づく推定量の動きを明らかにした。また極めて一般的な確率過程に対する適合度検定として、一般化ポートマントウ型検定を提案して、これが漸近的にカイ2乗分布に従うための条件を明らかにした。因果性検定では、Whittle 尤度に基づいて同時因果性を検定する統計量の提案し、その漸近分布を明らかにした。近接単位根過程に対しても、検定統計量の漸近特性を極めて一般的な設定で展開した。時系列の補間は、欠測値を含むデータに有効であるが、時系列の線形補間誤差に基づくコントラスト関数による推測論も展開した。意外な結果としては、このコントラストによる推定量は、一般に漸近有効にならないことを示した。通常の有効推定量は、線形予測誤差を最小にする推定量として特徴づけられるが、過去と未来の情報を使う補間誤差最小基準でこのような結果が得られることが判明した。 課題に関係するシンポジュームも、下記のように開催し活発な議論が行われた。(1)「高次元データに関連する統計理論の新展開とその応用」、 於 小樽商科大学、開催責任者:劉慶豊2013年9月5日ー7日。(2)「一般化線形モデルの最新の展開とその周辺」、於 千葉大学、開催責任者:汪金芳 2013年11月8日ー10日。(3)「統計科学の新展開」、於 金沢大学、開催責任者:星野伸明 2013年11初27日ー29日。(4)「Stable Process, Semimartingale, Finance & Pension Mathematics」於 早稲田大学、開催責任者:谷口正信、 Dou, X. and 濱田健太。 上記シンポジューム報告は下記:http://www.taniguchi.sci.waseda.ac.jp/kakenhoukoku2011.html においた

  • 時系列解析における縮小推定量の研究

    2013  

     View Summary

    独立標本での縮小推定量の研究には歴史があり、多様な研究がなされてきた。従属標本の統計解析である時系列解析では、縮小推定量の研究は端緒についたばかりと言える。本研究では、p 次の自己回帰モデルの自己回帰係数の推定に於いて縮小推定量を提案した。従来は、最小2乗推定量や疑似最尤推定量で推測されてきた。本研究の前半では、提案した縮小推定量と従来の最小2乗推定量の平均2乗誤差(MSE)を比較して、MSE の意味で縮小推定量が最小2乗推定量を改善する条件を求めた。 また縮小係数に未知量が入るので、これを推測した推定量のよさも調べた。数値的には、自己回帰過程が単位根過程から離れるにつれて縮小推定量が最小2乗推定量を、よりよく改善することを見た。本研究の後半では、定常時系列の予測に縮小型予測子を導入した。定常過程の最適線形予測子は、そのスペクトル密度関数が既知であれば、完全に特定される。実際にはスペクトル密度関数は観測系列から推測されるので、誤特定化が常に起こっている。誤特定されたスペクトル密度関数から形式的に求めた最適予測子( misspecified best predictor) の予測誤差は、すでに評価されている。本研究では、この状況で、misspecified best predictor の縮小予測子を提案した。この縮小予測子の予測誤差を評価して、これが missecified best predictor のそれを改善する条件をもとめた。また、この縮小予測子は縮小係数に期待値を含むので、これの標本バージョンを構成し、この縮小予測子のよさを議論した。自己回帰モデルで縮小予測子の動きを数値的にみても、従来型の予測子を改善していることを見た。従属標本に対する縮小推定、縮小予測子の研究は、端緒についたばかりであるが、従来の推定量、予測子を改善しており、更なる展開が必要となろう。近年、金融時系列解析が理論、応用ともに発展してきており、縮小推定論を、非線形時系列モデル、非定常時系列モデルの未知指標の推測に展開する必要があろう。この課題も、上記の基礎結果が、よい指針を与えよう。

  • 時系列解析と統計的金融工学の総合的研究

    2005  

     View Summary

    時系列解析において非線形、非定常、非正規確率過程に対する局所漸近正規性の証明を行いこれに基づく最適推測、検定、判別の基礎理論を構築した。また時系列解析における経験尤度法、局所 Whittle 尤度に基づく推測論等の基礎理論も発展させた。局所 Whittle 尤度に基づく、スペクトル推定量は、簡単な母数型スペクトルを適合して、その母数を周波数に依存させる形で推定量を得た。これは、従来の非母数的なスペクトル推定量を最小2乗誤差の意味で改善する等のよさをもつことが、数値的にも示された。経験尤度法では従来のスペクトル型が明示的にわかっているという状況でなくても、種々の時系列指標の信頼区間を与えることが可能になり、これも従来の時系列解析に新しい手法を提案することができた。応用面では、最適ポートフォリオ係数の漸近有効な推定量で推測することを試み、従来とは異なったより一般的な仮定;収益率過程は(1)非正規定常過程、(2)非正規局所定常過程に対して、従来の推定量の漸近有効性と、(1)と(2)の仮定のもとでポートフォリオ係数の漸近有効な推定量を提案した。これは時系列解析の理論結果の金融工学への応用である。また、時系列の判別手法を非正規、非定常過程に応用し、時間依存するスペクトル密度関数の擬距離を用いて種々の企業の株価データをクラスター解析し、金融工学における格付けが、このような時系列構造をもつデータに関しても可能であることがわかった。従来の格付けは独立標本の判別解析に基づいており、このような手法は新しいアプローチとなる。

  • 時系列解析における縮小統計量の研究

    2004  

     View Summary

    独立標本に対しては、縮小統計量の研究は極めて詳細かつsyatematic に進められてきた。しかしながら時系列のような従属な標本に対してはこの様な研究は皆無といってよい。そこで本研究課題では、種々の時系列モデルでの縮小推定量の基礎理論を構築することをもくろんだ。具体的には、多次元正規過程の平均ベクトルの James-Stein 型推定量の平均2乗誤差をスペクトル密度行列の言葉で評価し、通常の標本平均を平均2乗誤差の意味で改善する十分条件を明らかにした。また関与の確率過程が長期記憶過程であるときもJames-Stein型推定量が標本平均を平均2乗誤差の意味で改善するための十分条件を求めた。これは、長期記憶パラメーターと短期記憶部のスペクトルの言葉で表現でき、改善のようすを種々の時系列モデルで数値的にも見た。 さらに時系列回帰モデルで回帰関数がグレナンダー条件を満たし、残差系列が正規定常過程を考える。このとき、回帰係数のJames-Stein型推定量と通常の最小2乗推定量の平均2乗誤差を回帰スペクトルと残差スペクトルの言葉で表し、James-Stein型推定量が最小2乗推定量を平均2乗誤差に意味で改善するための十分条件を求めた。種々の回帰スペクトルと残差スペクトルに対して、この改善のようすを数値的に検証した。 時系列の縮小推定量の研究は端緒についたばかりで、今後、分散量に対する縮小推定量の研究や、局所定常過程に関する縮小推定量の振る舞いの研究をすすめる予定である。

▼display all