OISHI, Shinichi

写真a

Affiliation

Faculty of Science and Engineering, School of Fundamental Science and Engineering

Job title

Professor

Homepage URL

http://www.oishi.info.waseda.ac.jp/~oishi

Concurrent Post 【 display / non-display

  • Faculty of Science and Engineering   Graduate School of Fundamental Science and Engineering

Research Institute 【 display / non-display

  • 2020
    -
    2022

    理工学術院総合研究所   兼任研究員

Education 【 display / non-display

  •  
    -
    1981

    Waseda University   Graduate School, Division of Science and Engineering   電気工学  

  •  
    -
    1981

    Waseda University   Graduate School, Division of Science and Engineering   電気工学  

  •  
    -
    1976

    Waseda University   Faculty of Science and Engineering   電子通信学科  

Degree 【 display / non-display

  • 早稲田大学   博士(工学)

  • Dr. eng

  • 早稲田大学   工学博士

Research Experience 【 display / non-display

  • 2010.09
    -
    2014.09

    FacultyofScienceandEngineering

  • 2014.09
    -
     

    Waseda University   Faculty of Science and Engineering   Senior Dean

  • 2014.09
    -
     

    Waseda University   Faculty of Science and Engineering   Senior Dean

  • 1989
    -
     

    Professor, Waseda University

  • 1984
    -
    1985

    Associate Professor, Waseda Unviersity

display all >>

Professional Memberships 【 display / non-display

  •  
     
     

    JSST

  •  
     
     

    Japan SIAM

  •  
     
     

    IEICE

 

Research Areas 【 display / non-display

  • Communication and network engineering

  • Theory of informatics

  • Applied mathematics and statistics

  • Basic mathematics

Research Interests 【 display / non-display

  • 数値数学、応用数学、計算理論、非線形理論・回路、情報理論、精度保証付き数値計算

Papers 【 display / non-display

  • Numerical verification for positive solutions of Allen–Cahn equation using sub- and super-solution method

    Yuta Matsushima, Kazuaki Tanaka, Shin’ichi Oishi

    Journal of Advanced Simulation in Science and Engineering   7 ( 1 ) 136 - 150  2020  [Refereed]

    DOI

  • Estimation of Sobolev embedding constant on a domain dividable into bounded convex domains

    Makoto Mizuguchi, Kazuaki Tanaka, Kouta Sekine, Shin'ichi Oishi

    JOURNAL OF INEQUALITIES AND APPLICATIONS     1 - 18  2017.11  [Refereed]

     View Summary

    This paper is concerned with an explicit value of the embedding constant from W-1,W- q(Omega) to L-p(Omega) for a domain Omega subset of R-N (N is an element of N), where 1 <= q <= p <=infinity. We previously proposed a formula for estimating the embedding constant on bounded and unbounded Lipschitz domains by estimating the norm of Stein's extension operator. Although this formula can be applied to a domain Omega that can be divided into a finite number of Lipschitz domains, there was room for improvement in terms of accuracy. In this paper, we report that the accuracy of the embedding constant is significantly improved by restricting Omega to a domain dividable into bounded convex domains.

    DOI

  • A method for verifying the accuracy of numerical solutions of symmetric saddle point linear systems

    Ryo Kobayashi, Takuma Kimura, Shin'ichi Oishi

    NUMERICAL ALGORITHMS   76 ( 1 ) 33 - 51  2017.09  [Refereed]

     View Summary

    A fast numerical verification method is proposed for evaluating the accuracy of numerical solutions for symmetric saddle point linear systems whose diagonal blocks of the coefficient matrix are semidefinite matrices. The method is based on results of an algebraic analysis of a block diagonal preconditioning. Some numerical experiments are present to illustrate the usefulness of the method.

    DOI

  • Numerical validation of blow-up solutions of ordinary differential equations

    Akitoshi Takayasu, Kaname Matsue, Takiko Sasaki, Kazuaki Tanaka, Makoto Mizuguchi, Shin'ichi Oishi

    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS   314   10 - 29  2017.04  [Refereed]

     View Summary

    This paper focuses on blow-up solutions of ordinary differential equations (ODEs). We present a method for validating blow-up solutions and their blow-up times, which is based on compactifications and the Lyapunov function validation method. The necessary criteria for this construction can be verified using interval arithmetic techniques. Some numerical examples are presented to demonstrate the applicability of our method. (C) 2016 Elsevier B.V. All rights reserved.

    DOI

  • Sharp numerical inclusion of the best constant for embedding H-0(1)(Omega) hooked right arrow L-p (Omega) on bounded convex domain

    Kazuaki Tanaka, Kouta Sekine, Makoto Mizuguchi, Shin'ichi Oishi

    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS   311   306 - 313  2017.02  [Refereed]

     View Summary

    In this paper, we propose a verified numerical method for obtaining a sharp inclusion of the best constant for the embedding H-0(1)(Omega) hooked right arrow L-p (Omega) on a bounded convex domain in R-2. We estimate the best constant by computing the corresponding extremal function using a verified numerical computation. Verified numerical inclusions of the best constant on a square domain are presented. (C) 2016 Elsevier B.V. All rights reserved.

    DOI

display all >>

Books and Other Publications 【 display / non-display

  • 回路理論

    大石進一

    コロナ社  2013.05 ISBN: 9784339008494

  • 待ち行列理論

    大石進一

    コロナ社  2003.05

  • MATLABによる数値計算

    大石進一

    培風館  2001.07

  • 数値計算ツール

    コロナ社  2001

  • 微積分とモデリングの数理

    朝倉書店  2001

display all >>

Misc 【 display / non-display

Awards 【 display / non-display

  • 文化功労者

    2020.11   文部科学省   精度保証付計算法と無誤差変換という画期的な数値計算法を編み出した.

  • JSIAM Fellow

    2013.06  

  • Best Paper Award, Nonlinear Theory and Its Applications , IEICE

    2012.04  

  • 紫綬褒章

    2012.04  

  • 日本応用数理学会業績賞

    2012.03  

display all >>

Research Projects 【 display / non-display

  • Construction of Theory of Digital Analysis

    新学術領域研究(研究課題提案型)

    Project Year :

    2008
    -
    2010
     

     View Summary

    Our research group is composed of scholars working in the areas of discrete mathematics, nonlinear differential equations, information theory and numerical computation. We have organized "Seminar on Digital Analysis" so that members can hold common understanding and insight on the fundamental theories and ideas of digital mathematics. As speakers of this seminar, we have invited 16 researchers who are highly active in the areas of discrete mathematics, mathematical modeling, information theory and numerical computation. We have succeeded in getting common understanding on digital analysis through exciting discussions in each lecture of the seminar.

  • Establishment of Verified Numerical Computation

    特別推進研究

    Project Year :

    2005
    -
    2009
     

     View Summary

    Establishment of Verified Numerical Computation We have studied verified numerical computations for partial differential equations and systems of linear equations using digital computers. Calculating sum of a vector and dot product of two vectors with guaranteed high accuracy is ubiquitous in scientific computing. We have developed such algorithms for accurate sum and dot product, which are known to be the fastest so far. As applications, we have applied the fast and accurate algorithms to sparse matrix computations, computational geometry and so forth. Moreover, we have succeeded in proving the existence and uniqueness of a solution of a partial differential equation, and in calculating an error bound of its approximate solution.

  • FDTDシミュレーションの精度

    Project Year :

    2004
    -
     
     

  • 通信における非線形性現象に関する研究

    Project Year :

    2000
    -
     
     

  • グラフィック・アルゴリズム及び精度保証付LSI設計支援システムの基礎的研究

    Project Year :

    1999
    -
     
     

display all >>

Specific Research 【 display / non-display

  • 精度保証付き数値計算学をベースとした理工学の展開

    2014  

     View Summary

    精度保証付き数値計算は研究代表者らが提案した,丸めモード制御方式による高速精度保証法や無誤差変換法の発展により,通常の近似計算の数倍の手間で,条件数に応じた高精度計算アルゴリズムを構築出来るようになった.これに伴い非常に広い範囲の理工学に現れる実数計算の問題を厳密に数値計算によって解けるようになり,様々な理工学の問題の解決を図ることができた.本年度は「ラプラス作用素の高精度固有値評価」,「非線形問題の線型化作用素に対する逆作用素ノルム評価」,「高精度逆コレスキー分解の収束解析」,「3次元多様体の双曲性に対する数値的分類定理」,「H行列を使用した線形方程式の新しい精度保証理論」に関して成果を得た.

  • 精度保証付き数値計算学の展開

    2010  

     View Summary

    精度保証付き数値計算学の展開:本研究では,非線形系に対する精度保証付き数値計算を展開するための基礎を構築し,その上で非線形偏微分方程式の計算機援用証明等の応用を展開した.1)大石・高安Newton-Kantorovichの定理を用いた計算機援用証明手法を確立するため,これまで不可能であった楕円型非線形偏微分方程式の解の存在と誤差の範囲内での一意性を証明した.計算で得られる近似解にある程度の滑らかさを仮定すると,従来よりもはるかに効果的な残差評価を適用でき,既存の過大評価を回避することができる.これによりEmden方程式の解などの非線形性が大きな解にも提案手法の適用範囲が拡大し,目標に向けて一歩前進した.2)劉・大石楕円型偏微分方程式を非凸な領域で考える場合,偏微分作用素は特異性により非常に扱いが難しい.従来法の多くは凸領域を仮定することが多いが,我々は混合型有限要素とHypercircleequationを用いて,任意多角形領域上でラプラス作用素の固有値評価を精度保証付きで求めるユニバーサルな手法を世界で初めて開発した.また提案手法を用いたWebアプリケーションを開発し,ユーザーがオンライン上でグラフィカルなシミュレーションを行えるようになっている.3)山中・大石精度保証付き数値積分では,全ての計算誤差を考慮し「ユーザーが要求する精度まで数学的に正しい結果を返すアルゴリズム」を提案した.この手法は計算に生じる公式誤差の上限を多重階微分値を利用したり,複素円盤領域上で事前に計算できる.一般的な近似解だけを求める数値積分アルゴリズムは許容誤差を満たすように再帰的にアルゴリズムが設計されていることが多いが,本手法を用いると許容誤差を満たす分点数が事前誤差評価によりあらかじめ計算できる.これを用いて,従来の近似計算アルゴリズムと同等程度(時に高速)な超高速かつ高信頼な精度保証付きアルゴリズムを開発した.

  • 高速精度保証付き数値計算に関する研究

    2002   柏木 雅英, 中谷 祐介, 宮田 高富

     View Summary

    精度保証付き数値計算を従来の近似計算と比べて2倍程度の手間で行うための理論体系の構築とソフトウエア開発を行った。主な成果をまとめると以下のようになる。(1) 理論的手法として、丸めの制御精度保証方式を考案した。これは、IEEE浮動小数点規格754に従うCPUにPortableに成立するアルゴリズム理論で、ベクトル区間演算を基礎としている。(2) この基礎理論にもとづき、数値線形代数の諸問題に対する、高速精度保証アルゴリズムを開発した。この中には、密係数行列をもつ連立一次方程式の精度保証理論、疎係数行列をもつ連立一次方程式の精度保証理論、固有値の高速精度保証法、残差反復解法の精度保証化理論などを含む。(3) 以上の成果に基づき、精度保証ライブラリを開発した。(4) これをSLABという精度保証付き数値計算モードをもつ数値計算ツールとしてソフトウエア化した。SLABは近似解の計算においてはMATLABと互換であるあるが、新たに精度保証モードをもち、この中で計算すると、解の存在と近似解の厳密な誤差を高速に実行する機能をもっている。SLABは現在GPLとして公開中である。

  • 高速精度保証付き数値計算に関する研究

    2000  

     View Summary

     精度保証付き数値計算とは数値計算の結果得られた近似解の近くに真の解が存在することを保証し、その(局所的)一意性や真の解と数値解の誤差をシャープに評価することを目的として行われる数値計算のことである。したがって、数値計算におけるあらゆる誤差を数学的に正しく評価して、この目的を達成する必要がある。従来は、このようなことは理想ではあるが、理論的にも現実的にも難しく、精度保証付き数値計算は実質的に不可能であると考えられていた。本研究では、IEEE754の倍精度浮動小数点数規格にもとづき、浮動小数点数演算に於ける丸めのモードを適切に制御する手法を関数解析的な摂動理論(数値解析理論)を組み合わせることにより、精度保証付き数値計算が高速に実行できること明らかにする目的で実施された。以下、その成果の概要を述べる。1.連立一次方程式の数値解の高速精度保証 IEEE754の上への丸めと下への丸めのそれぞれのモードでベクトルの内積を2回実行することにより、ベクトルの内積の値を上下からシャープに評価できることを示した。これを用いて、連立一次方程式の数値解の精度保証を行うためのアルゴリズムを開発した。LU分解の事前誤差評価式を巧みに利用することで、数値解をガウスの消去法で求めるのと同じ手間でその精度保証ができることを示した。例えば1000x1000密行列を係数行列に持つ場合、Pentium III 800MHz CPUで最適化BLASとLAPACKにより、数値解は2秒で求まるが、その精度保証も2秒で実行可能であることを示している。2.行列の固有値の高速精度保証 Bauer-Fike型の固有値の摂動定理を利用して、行列の固有値を高速に精度保証する手法を1の技法を応用して確立した。この手法は、多重固有値をもつ一般複素行列に適用可能で、広い応用範囲をもつ。

  • 精度保証付き数値計算システムの効率化の研究

    1999   堀内 和夫, 川瀬 武彦, 吉村 浩明, 柏木 雅英, 神澤 雄智

     View Summary

     数値計算における丸め誤差および打切り誤差を勘案して、数学モデルとして与えられた方程式の数学的に厳密な意味での解の存在を数値計算により保証し、数値計算で得られた近似解(以下、数値解と略称する)と真の解との間の誤差のシャープな上限を数値計算することを精度保証付き数値計算という。精度保証付き数値計算は九州大学の須永教授によって1950年代の終わりに提案された区間解析がその基礎となっている日本発の技術である。区間解析では、実数は、その数を内部に含む、両端を浮動小数点数とする区間で近似される。そして、実数の四則演算は区間演算に置き換えられて実行される(区間演算単体では浮動小数点数の四則演算の2から4倍ほどの計算量)。須永の区間演算の提案は外国で認められ、アメリカ、ドイツを中心として精度保証付き数値計算の研究は進展してきた。精度保証付き数値計算の研究の発展は欧米で進められてきたともいえよう。これらの研究は、区間演算ごとに丸めの方向の切り替えをする前提であった。この方法では丸めの制御命令が四則演算ごとで加わることにより、高速化のために高度な調整を行っている従来の数値計算用のプログラム資産が活用できなくなるという欠点があった。本研究では、区間演算を行う際に必要となるCPUの丸め方向の変更命令を、できるだけ、プログラムの外へ出す方式を開発した。すなわち、通常の区間演算では演算ごとにCPUの丸めの方向が切り替えられていたが、本研究では、丸めの方向の切り替えを行列の積の演算の前後で行うことによって線形系の数値解の精度保証ができる方式を提案している。この方法では、連立一次方程式の数値解の精度保証などにおいては、区間演算ごとに丸めの方向が切り替えられていた従来方式に比べて、丸めの方向の切り替えの回数が数回というレベルに減るとともに、行列の積といったBLASの第3レベルの命令をそのまま使えるので、従来の計算機環境の中で、従来の最適化されたプログラムがそのまま使えるようになっている。これにより、精度保証付き数値計算が近似的な数値解を得るための従来の数値計算の計算時間に対して、実速度で7から8倍以内、早い場合には2倍程度で精度保証(近似解を求めることも含めての計算時間)ができることが示された。

 

Syllabus 【 display / non-display

display all >>

 

Committee Memberships 【 display / non-display

  •  
     
     

    IEICE  Trans. Fundamentals Editor

  •  
     
     

    IEICE  Nonlinear Theory and its Applications Editor in Chief