2025/12/06 更新

写真a

ヤマモト タツキ
山本 立規
所属
理工学術院 基幹理工学部
職名
講師(任期付)
学位
博士 (理学) ( 2025年03月 早稲田大学 )
メールアドレス
メールアドレス

経歴

  • 2025年04月
    -
    継続中

    早稲田大学   基幹理工学部数学科   講師 (任期付)

  • 2022年04月
    -
    2025年03月

    早稲田大学   理工学術院   日本学術振興会特別研究員(DC1)

学歴

  • 2021年09月
    -
    2025年03月

    早稲田大学   大学院基幹理工学研究科   数学応用数理専攻 博士後期課程  

  • 2020年04月
    -
    2021年09月

    早稲田大学   大学院基幹理工学研究科   数学応用数理専攻 修士課程  

  • 2017年04月
    -
    2020年03月

    早稲田大学   基幹理工学部   数学科  

  • 2016年04月
    -
    2017年03月

    早稲田大学   基幹理工学部   学系1  

  • 2013年04月
    -
    2016年03月

    埼玉県立川越高等学校  

所属学協会

 

論文

講演・口頭発表等

  • The flux problem for the steady-state Navier-Stokes equations with nonhomogeneous slip boundary conditions

    Tatsuki Yamamoto  [招待有り]

    非圧縮性粘性流体の数理解析   (京都大学数理解析研究所) 

    発表年月: 2025年12月

    開催年月:
    2025年12月
     
     
  • Nonhomogeneous boundary value problem for the steady Navier-Stokes equations in multiply-connected domains

    Tatsuki Yamamoto  [招待有り]

    Mini Workshop on Nonlinear PDEs   (東京科学大学) 

    発表年月: 2025年08月

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier-Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary datum. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • The flux problem for the steady-state Navier-Stokes equations with nonhomogeneous slip boundary conditions

    山本立規  [招待有り]

    京都大学NLPDEセミナー   (京都大学) 

    発表年月: 2025年05月

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier-Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary datum. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • 多重連結領域における定常Navier-Stokes方程式の非斉次境界値問題

    山本立規  [招待有り]

    第44回さいたま数理解析セミナー   (大宮ソニックシティ) 

    発表年月: 2025年03月

  • The flux problem for the steady-state Navier-Stokes equations with nonhomogeneous slip boundary conditions

    Tatsuki Yamamoto  [招待有り]

    PDE and Analysis Seminar   (University of Pittsburgh) 

    発表年月: 2025年02月

     概要を見る

    We consider the nonhomogeneous boundary value problem for the stationary Navier-Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. It is shown that this problem admits at least one weak solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary datum. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • 多重連結領域における非斉次slip境界条件を課した定常Navier-Stokes方程式の可解性

    山本立規  [招待有り]

    若手による流体力学の基礎方程式研究集会   (名古屋大学) 

    発表年月: 2025年01月

    開催年月:
    2025年01月
     
     
  • The flux problem for the steady-state Navier-Stokes equations with nonhomogeneous slip boundary conditions

    山本立規  [招待有り]

    名古屋微分方程式セミナー   (名古屋大学) 

    発表年月: 2024年12月

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier-Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary datum. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • 多重連結領域における非斉次slip境界条件を課した定常Navier-Stokes方程式の可解性

    G. P. Galdi, 山本立規

    日本数学会2024年度秋季総合分科会   (大阪大学豊中キャンパス) 

    発表年月: 2024年09月

    開催年月:
    2024年09月
     
     

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier–Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. The required a priori estimate to apply the Leray–Schauder fixed point theorem is proved by a contradiction argument.

  • Nonhomogeneous boundary value problem for the steady Navier-Stokes equations in multiply-connected domains

    Tatsuki Yamamoto  [招待有り]

    Taiwan-Waseda Joint Workshop on Partial Differential Equations and Mathematical Modelings   (早稲田大学) 

    発表年月: 2024年08月

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier- Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • Nonhomogeneous boundary value problem for the steady Navier-Stokes equations in multiply-connected domains

    Tatsuki Yamamoto

    Mathematical Fluid Mechanics In 2024   (チェコ科学アカデミー数学研究所) 

    発表年月: 2024年08月

    開催年月:
    2024年08月
     
     

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier-Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional as- sumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary datum. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • Nonhomogeneous boundary value problem for the steady Navier-Stokes equations in two-dimensional multiply-connected bounded domains

    山本立規  [招待有り]

    第9回 流体数学セミナー   (お茶の水女子大学) 

    発表年月: 2024年05月

     概要を見る

    We consider the nonhomogeneous boundary value problem for the steady Navier-Stokes equations under the slip boundary conditions in a two-dimensional bounded domain with multiple boundary components. By the incompressibility condition of the fluid, the total flux of the given boundary datum through the boundary must be zero. We prove that this problem has a solution if the friction coefficient is sufficiently large compared with the kinematic viscosity constant and the curvature of the boundary. No additional assumption (other than the necessary requirement of zero total flux through the boundary) is imposed on the boundary data. We also show that such an assumption on the friction coefficient is redundant for the existence of a solution in the case when the fluxes across each connected component of the boundary are sufficiently small, or the domain and the given data satisfy certain symmetry conditions. This talk is based on the joint work with Prof. Giovanni P. Galdi (University of Pittsburgh).

  • Nonhomogeneous boundary value problem for the steady Navier-Stokes equations with the slip boundary conditions in two-dimensional multiply-connected bounded domains

    Tatsuki Yamamoto  [招待有り]

    PDE and Analysis Seminar   (University of Pittsburgh) 

    発表年月: 2024年02月

  • Logarithmically Improved Extension Criteria Involving the Pressure for the Navier–Stokes Equations in $\mathbb {R}^{3}$

    Tatsuki Yamamoto  [招待有り]

    PDE and Analysis Seminar   (University of Pittsburgh) 

    発表年月: 2022年11月

  • Logarithmically Improved Extension Criteria Involving the Pressure for the Navier–Stokes Equations in $\mathbb {R}^{3}$

    山本立規  [招待有り]

    第2回 非線形PDE若手ワークショップ   (オンライン開催) 

    発表年月: 2022年03月

  • Logarithmically Improved Extension Criteria Involving the Pressure for the Navier–Stokes Equations in $\mathbb {R}^{3}$

    Tatsuki Yamamoto  [招待有り]

    International Workshop on Multiphase Flows: Analysis, Modelling and Numerics   (オンライン開催) 

    発表年月: 2021年12月

    開催年月:
    2021年11月
    -
    2021年12月
  • Logarithmically Improved Extension Criteria Involving the Pressure for the Navier–Stokes Equations in $\mathbb {R}^{3}$

    金丸諒, 山本立規

    日本数学会2021年度秋季総合分科会   (オンライン開催) 

    発表年月: 2021年09月

    開催年月:
    2021年09月
     
     
  • Logarithmically Improved Extension Criteria Involving the Pressure for the Navier–Stokes Equations in $\mathbb {R}^{3}$

    山本立規

    第42回発展方程式若手セミナー   (オンライン開催) 

    発表年月: 2021年09月

    開催年月:
    2021年08月
    -
    2021年09月

▼全件表示

共同研究・競争的資金等の研究課題

  • 領域の位相的性質に依存する定常流の数学的構造の解明

    日本学術振興会  科学研究費助成事業

    研究期間:

    2022年04月
    -
    2025年03月
     

    山本 立規

     [国際共著]

     概要を見る

    流体や電磁気に関わる現象には、その現象の生じる領域の位相的性質(穴の個数や内部境界の配置)に強く依存すると思われる問題が多く現れる。本研究では川の流れや台風などの流体の運動に関連した自然現象の解析に最も重要な役割を果たす流体力学の基礎方程式(非圧縮性Navier-Stokes方程式や磁気流体力学方程式)の定常問題を多重連結領域において考察し、(a)穴の個数などの領域の位相的性質や境界条件の違いが方程式の可解性に与える影響 (b)Navier-Stokes方程式とは本質的に異なる、磁気流体力学方程式特有の数学的構造(電磁場が流体に及ぼす影響)を明らかにすることを目的とする。

  • 領域の位相的性質に依存する定常流の数学解析

    科学技術振興機構 (JST)  次世代研究者挑戦的研究プログラム(SPRING)

    研究期間:

    2021年10月
    -
    2022年03月
     

    山本立規

Misc

  • Logarithmically Improved Extension Criteria Involving the Pressure for the Navier–Stokes Equations in $\mathbb {R}^{3}$

    山本立規

    第42回発展方程式若手セミナー報告集     249 - 256  2022年02月

    担当区分:筆頭著者, 責任著者

    研究発表ペーパー・要旨(全国大会,その他学術会議)  

その他

  • スーパーグローバル大学創成支援 早稲田大学数物系科学拠点 数物系科学コース生

    2021年09月
    -
    2025年03月

     概要を見る

    https://www.waseda.jp/fsci/mathphys/

 

現在担当している科目

▼全件表示

担当経験のある科目(授業)