Updated on 2025/11/30

写真a

 
SHIODA, Tatsuya
 
Affiliation
Faculty of Science and Engineering, Waseda Research Institute for Science and Engineering
Job title
Junior Researcher(Assistant Professor)
Degree
Doctor of Science ( 2024.03 Osaka University )

Research Experience

  • 2025.04
    -
    Now

    Japan Society for the Promotion of Science

  • 2024.04
    -
    Now

    Nara Medical University   Medical Faculty Medical Department

  • 2024.04
    -
    Now

    Waseda University   Research Institute for Science and Engineering

  • 2022.04
    -
    2024.03

    Japan Society for the Promotion of Science

Education Background

  • 2019.04
    -
    2024.03

    Osaka University  

  • 2015.04
    -
    2019.03

    大阪府立大学  

Research Areas

  • Life, health and medical informatics / Cell biology / Genetics

Research Interests

  • バイオインフォマティクス

  • NGS

  • 長鎖ノンコーディングRNA

  • lifespan

  • Aging

  • C. elegans

  • 細胞老化

  • Autophagy

▼display all

Awards

  • 第14期アーリーバードプログラム プレゼンテーションコンテスト 優秀賞

    2025.03   早稲田大学 理工学術総合研究所   公共データベースを駆使した細胞老化の制御に寄与するlncRNAの探索

  • 優秀口頭発表賞

    2023.08   線虫研究の未来を創る会 2023  

  • 学生優秀発表賞

    2023.06   日本基礎老化学会  

  • Best Presentation Award

    2022.03   関西地区線虫勉強会  

  • 国際学術交流助成

    2019.12   公益社団法人 医学振興銀杏会  

 

Papers

  • Reply to Gahlot and Singh: A pivotal role of neuronal MML-1 in Caenorhabditis elegans.

    Tatsuya Shioda, Shuhei Nakamura

    Proceedings of the National Academy of Sciences of the United States of America   121 ( 22 ) e2403801121  2024.05  [International journal]

    DOI PubMed

    Scopus

  • Neuronal MML-1/MXL-2 regulates systemic aging via glutamate transporter and cell nonautonomous autophagic and peroxidase activity.

    Tatsuya Shioda, Ittetsu Takahashi, Kensuke Ikenaka, Naonobu Fujita, Tomotake Kanki, Toshihiko Oka, Hideki Mochizuki, Adam Antebi, Tamotsu Yoshimori, Shuhei Nakamura

    Proceedings of the National Academy of Sciences of the United States of America   120 ( 39 ) e2221553120  2023.09  [Refereed]  [International journal]

    Authorship:Lead author

     View Summary

    Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.

    DOI PubMed

    Scopus

    9
    Citation
    (Scopus)
  • Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis

    Hitomi Yamamoto-Imoto, Satoshi Minami, Tatsuya Shioda, Yurina Yamashita, Shinsuke Sakai, Shihomi Maeda, Takeshi Yamamoto, Shinya Oki, Mizuki Takashima, Tadashi Yamamuro, Kyosuke Yanagawa, Ryuya Edahiro, Miki Iwatani, Mizue So, Ayaka Tokumura, Toyofumi Abe, Ryoichi Imamura, Norio Nonomura, Yukinori Okada, Donald E. Ayer, Hidesato Ogawa, Eiji Hara, Yoshitsugu Takabatake, Yoshitaka Isaka, Shuhei Nakamura, Tamotsu Yoshimori

    Cell Reports   38 ( 9 ) 110444 - 110444  2022.03  [Refereed]  [International journal]

     View Summary

    Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.

    DOI PubMed

    Scopus

    51
    Citation
    (Scopus)
  • THOC4 regulates energy homeostasis by stabilizing TFEB mRNA during prolonged starvation

    Toshiharu Fujita, Sayaka Kubo, Tatsuya Shioda, Ayaka Tokumura, Satoshi Minami, Megumi Tsuchiya, Yoshitaka Isaka, Hidesato Ogawa, Maho Hamasaki, Li Yu, Tamotsu Yoshimori, Shuhei Nakamura

    Journal of Cell Science   134 ( 6 )  2021.03  [Refereed]  [International journal]

     View Summary

    ABSTRACT

    TFEB, a basic helix-loop-helix transcription factor, is a master regulator of autophagy, lysosome biogenesis and lipid catabolism. Compared to posttranslational regulation of TFEB, the regulation of TFEB mRNA stability remains relatively uncharacterized. In this study, we identified the mRNA-binding protein THOC4 as a novel regulator of TFEB. In mammalian cells, siRNA-mediated knockdown of THOC4 decreased the level of TFEB protein to a greater extent than other bHLH transcription factors. THOC4 bound to TFEB mRNA and stabilized it after transcription by maintaining poly(A) tail length. We further found that this mode of regulation was conserved in Caenorhabditiselegans and was essential for TFEB-mediated lipid breakdown, which becomes over-represented during prolonged starvation. Taken together, our findings reveal the presence of an additional layer of TFEB regulation by THOC4 and provide novel insights into the function of TFEB in mediating autophagy and lipid metabolism.

    DOI PubMed

    Scopus

    1
    Citation
    (Scopus)

Books and Other Publications

  • Aging mechanisms II : longevity, metabolism, and brain aging

    ( Part: Contributor)

    Springer  2022 ISBN: 9789811679766

Presentations

  • 神経系MML-1/MXL-2による組織間コミュニケーションを介した寿命制御機構の解明

    塩田達也, 高橋一徹, 池中健介, 神吉智丈, 岡敏彦, 望月秀樹, Adam Antebi, 吉森保, 中村修平

    第75回日本細胞生物学会大会 

    Presentation date: 2023.06

  • Tissue-specific roles of MML-1/MXL-2 in longevity

    Tatsuya Shioda, Ittetsu Takahashi, Kensuke Ikenaka, Tomotake Kanki, Toshihiko Oka, Hideki Mochizuki, Antebi Adam, Tamotsu Yoshimori, Shuhei Nakamura

    Presentation date: 2023.06

  • MML-1/MXL-2による組織間コミュニケーションを介した寿命制御機構の解明

    塩田達也, 池中健介, 神吉智丈, 岡敏彦, 望月秀樹, Antebi Adam, 吉森保, 中村修平

    第45回日本分子生物学会年会 

    Presentation date: 2022.12

    Event date:
    2022.11
    -
    2022.12
  • 寿命に影響するオートファジーとその制御機構の謎に迫る

    塩田達也

    第311回 大阪大学大学院生命機能研究科交流会(FBSコロキウム) 

    Presentation date: 2022.10

  • 神経系MML-1/MXL-2による組織特異的寿命制御機構の解明

    塩田達也, 池中健介, 望月秀樹, 神吉智丈, Adam Antebi, 吉森保, 中村修平

    関西地区線虫勉強会 

    Presentation date: 2022.03

  • Tissue specific roles of MML-1/MXL-2 in longevity and autophagy

    Tatsuya Shioda, Kensuke Ikenaka, Hideki Mochizuki, Adam Antebi, Tamotsu Yoshimori, Shuhei Nakamura

    Keystone Symposia on Intra- and Intercellular Mechanisms of Aging 

    Presentation date: 2020.02

  • MML-1-オートファジーによる組織特異的寿命制御機構の解明

    塩田達也, 赤山詩織, 吉森保, 中村修平

    AMED-CREST・PRIME「機能低下」領域 令和元年キックオフ会議 

    Presentation date: 2020.01

  • MML-1-オートファジーによる組織特異的寿命制御機構の解明

    塩田達也, 吉森保, 中村修平

    第12回 オートファジー研究会・第1回新学術「マルチモードオートファジー」班会議 

    Presentation date: 2019.10

▼display all

Research Projects

  • 老化細胞のSASP因子分泌を制御する長鎖ノンコーディングRNAの探索

    日本学術振興会  科学研究費助成事業

    Project Year :

    2025.04
    -
    2028.03
     

    塩田 達也

  • 公共データベースを駆使した細胞老化の制御に寄与する長鎖ノンコーディングRNAの探索

    早稲田大学 理工学術院総合研究所 第14期 アーリーバードプログラム 

    Project Year :

    2024.06
    -
    2025.03
     

  • Identification of neuronal histone variants in longevity

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows

    Project Year :

    2022.04
    -
    2024.03
     

  • 神経系MML-1/MXL-2による組織特異的な寿命制御機構の解明

    科学技術振興機構(JST)  次世代研究者挑戦的研究プログラム(大阪大学-学際融合を推進し社会実装を担う次世代挑戦的研究者育成プロジェクト)

    Project Year :

    2021.10
    -
    2022.03
     

Misc

  • 【モデル生物による老化研究】オートファジーと老化・寿命制御

    中村 修平, 塩田 達也, 吉森 保

    細胞   52 ( 11 ) 590 - 593  2022.10

  • 加齢に伴うオートファジー低下のメカニズム

    中村 修平, 塩田 達也, 吉森 保

    生化学   92 ( 2 ) 236 - 239  2020.04

Other

  • 大阪大学 卓越大学院プログラム 生命医科学の社会実装を推進する卓越人材の涵養

    2019.04
    -
    2024.03