Updated on 2025/11/30

写真a

 
YOSHIDA, Keisuke
 
Affiliation
Faculty of Science and Engineering, School of Advanced Science and Engineering
Job title
Assistant Professor(without tenure)

Research Experience

  • 2024.04
    -
    Now

    Waseda University   Faculty of Science and Engineering   Research Associate

  • 2023.04
    -
    2024.03

    Japan Society for the Promotion of Science   Research Fellow (DC2)

Education Background

  • 2022.04
    -
    Now

    Waseda University   Graduate School of Advanced Science and Engineering   Department of Applied Chemistry  

  • 2020.04
    -
    2022.03

    Waseda University   Graduate School of Advanced Science and Engineering   Department of Applied Chemistry  

  • 2016.04
    -
    2020.03

    Waseda University   School of Advanced Science and Engineering   Department of Applied Chemistry  

Research Areas

  • Chemical reaction and process system engineering / Structural materials and functional materials
 

Papers

  • Heat supply to and hydrogen desorption from magnesium hydride in a thermally insulated container with hot gas flow

    Keisuke Yoshida, Suguru Noda, Nobuko Hanada

    Chemical Engineering Journal   491  2024.07  [Refereed]

    Authorship:Lead author

     View Summary

    We experimentally studied hydrogen desorption from MgH2 by supplying heat via a hot gas flow. Porous sheets of MgH2 held in a sponge-like carbon nanotube (CNT) matrix were developed and placed in a coaxial double-tube reactor. Ar gas was heated using a cylindrical heater and then flowed alongside the MgH2-CNT sheets, thereby increasing the temperature of the sheets and enabling the desorption of hydrogen into the gas flow. The total energy efficiency was approximately 6.2% when 64% of hydrogen in MgH2 was desorbed. A numerical simulation was conducted for the heat transfer and hydrogen desorption, and the obtained results were consistent with the experimental results. According to the simulation, the low energy efficiency was attributed to the small heat capacity ratio of MgH2 to the reactor (0.082) and considerable radiative heat loss (53%). The simulation was used to predict energy efficiency improvements, and the efficiency was considered to increase to 12% upon increasing the heat capacity ratio from 0.082 to 1.4, and further to 21% upon doubling the Ar flow rate, which enhanced the convective heat transfer from the heater to MgH2.

    DOI

    Scopus

    5
    Citation
    (Scopus)
  • Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH<inf>2</inf> sheet

    Keisuke Yoshida, Kosuke Kajiwara, Hisashi Sugime, Suguru Noda, Nobuko Hanada

    Chemical Engineering Journal   421  2021.10  [Refereed]

    Authorship:Lead author

     View Summary

    We propose using hydrogen as a heat transfer medium to supply waste heat from hydrogen-driven devices to hydrogen storage tanks. In our model, MgH2 is used in the form of porous sheets, set in parallel in the tank, and heat is supplied via hot hydrogen flowed through the interspaces between the porous sheets. Feasibility of the hydrogen desorption reaction in this process was verified numerically. Hydrogen efficiently carried heat to the stack of porous MgH2 sheets via convective heat transfer and then carried heat into the porous MgH2 sheets via conductive heat transfer through the pores owing to its high thermal conductivity. We found that the hydrogen desorption is also fast enough to allow the supplied heat to be used efficiently to drive the endothermic hydrogen desorption reaction. It was understood that the thickness of the MgH2 sheet and hot hydrogen flow speed affected hydrogen desorption. These factors can be evaluated by using the dimensionless number of τs/τh which is the ratio of the space time to the time constant for heat transfer in the MgH2 sheet. Under τs/τh > 0.01 range, both the reaction and heat transfer are fast enough, the hydrogen desorption is limited by heat supply, and hydrogen desorption amount is proportional to the heat supplied to the reactor. The tank structure and operating conditions can be designed by using the dimensionless number of τs/τh.

    DOI

    Scopus

    16
    Citation
    (Scopus)

Research Projects

  • 水素を熱媒体として廃熱を活用する水素吸蔵放出システムの開発

    日本学術振興会  科学研究費助成事業

    Project Year :

    2024.07
    -
    2026.03
     

    吉田 啓佑

  • 水素を熱媒体として廃熱を活用する水素吸蔵放出システムの開発

    日本学術振興会  科学研究費助成事業

    Project Year :

    2023.04
    -
    2025.03
     

    吉田 啓佑

     View Summary

    水素化マグネシウム(MgH2)は高容量の水素貯蔵が可能な材料である。一方で、タンクに充填すると水素吸蔵/放出時には放熱/熱供給が重要となり、熱伝導率の低い粉体では固体の伝熱で不利となる。本研究の目的は水素を熱媒体として流通させ、水素化マグネシウム(MgH2)を用いた水素貯蔵タンクから水素を吸蔵放出させるプロセスの検証と多孔質材料を用いた実証、さらに固体酸化物形燃料電池(SOFC)と熱的統合したエネルギー供給システムへの応用である。本年度は主に多孔質材料から水素放出する実証実験を行った。多孔質材料としてMgH2とカーボンナノチューブ(CNT)を複合化したMgH2-CNTシートを作製し、断熱構造を施した反応器に設置した。高温のArガスを試料部分へ送り込むと水素の放出が確認された。また、実験装置の2次元モデルを作成し、対流伝熱によりシートに熱が供給されるモデルでシミュレーションを行った。温度変化や水素放出の結果が再現され、高温気体と多孔質シートの熱交換によって熱を供給するプロセスで水素が放出されることが示された。本実験では充填した水素量の99%を放出した際にエネルギー効率が低く6.8%であった。シミュレーションより、反応器の顕熱と放射損失が主な要因であり、MgH2の充填量の増加及び反応熱/熱容量比を低下することでエネルギー効率の向上が見込まれることが示された。
    また、提案する水素貯蔵タンクとSOFCを組み合わせたシステムを検討中である。本プロセスではMgH2タンクの出口水素温度が278 °C(平衡温度)であり、熱損失を抑えるために顕熱を回収し再利用する必要がある。流通水素が熱媒体としてSOFCとMgH2タンクの間で熱と水素を授受するMgH2タンク-SOFCシステムのシナリオを作成した。理想的に熱交換して熱損失のない定常運転にて最大発電効率68%(LHV)が得られることが分かった。