Updated on 2025/03/09

写真a

 
ASANO, Gota
 
Affiliation
Faculty of Science and Engineering, Waseda Research Institute for Science and Engineering
Job title
Researcher(Assistant Professor)
Degree
修士

Research Experience

  • 2021.05
    -
    Now

    Waseda University   Research Institute for Science and Engineering

  • 2018.04
    -
    2021.04

    KONICA MINOLTA   General Manager

  • 2014.01
    -
    2018.03

    コニカミノルタ株式会社 ヘルスケア事業本部 超音波事業部   事業企画部   部長

  • 2008.08
    -
    2013.12

    Panasonic Healthcare   General Manager

  • 2006.08
    -
    2008.07

    松下電器産業株式会社 ヘルスケア社   バイオメディカル開発センター   開発企画グループ 参事

  • 2003.08
    -
    2006.07

    松下電池工業株式会社   技術戦略部   参事

  • 1993.04
    -
    2003.07

    松下電池工業株式会社   アルカリ蓄電池事業部 商品開発部   チームリーダー   課長

▼display all

Education Background

  • 1991.04
    -
    1993.03

    日本大学   大学院 理工学研究科 博士前期課程   工業化学専攻  

  • 1987.04
    -
    1991.03

    日本大学   理工学部 工業化学科  

Committee Memberships

  • 1999
    -
    2000

    電池工業会  ニカド・ニッケル水素電池分科会 主査

Professional Memberships

  •  
     
     

    材料技術研究協会

  •  
     
     

    無機マテリアル学会

  •  
     
     

    日本セラミックス協会

  •  
     
     

    電気化学会

Research Areas

  • Inorganic compounds and inorganic materials chemistry / Medical systems / Biomaterials / Electric and electronic materials / Inorganic materials and properties

Research Interests

  • inorganic materials

  • healthcare

  • battery

 

Papers

  • Iron Doped Calcium Manganese Oxide Cathode Materials for Aqueous Zinc Secondary Batteries

    Gota Asano, Yoshiyuki Kojima

    Indonesian Journal of Chemical Research   12 ( 3 ) 266 - 274  2025.01  [Refereed]

    Authorship:Lead author

     View Summary

    In recent years, zinc secondary batteries, which utilize a water-based electrolyte and offer high safety, have attracted attention as post-lithium-ion batteries. Zn has a high specific capacity (820 mAh/g) and a redox potential of -0.76 V (versus the standard hydrogen electrode) as a cathode. Furthermore, combining it with new cathode materials could significantly enhance performance. In particular, layered compounds containing manganese are inexpensive, widely used in industry, and considered promising candidates. This study synthesized calcium manganese oxide with a layered structure and investigated its potential as a cathode material for zinc secondary batteries. It is already known that Ca₂Mn₃O₈ has a layered structure and can be synthesized with a Mn/Ca atomic ratio ranging from 1.5 to 2.5. This research examined the effect of adding Fe and Al to this calcium manganese oxide on battery performance. When Fe was added, the battery capacity increased by 20%, reaching 177 mAh/g compared to the sample without Fe. This increase is believed to result from an increased interlayer distance, promoting the incorporation of structural water and enhancing ion conversion reactions during charge and discharge. However, adding Al was found to have no beneficial effect on battery performance.

    DOI

  • Aqueous zinc secondary battery using phosphorus-substituted zinc silicate as anode

    Gota Asano, Tetsuo Umegaki, Yoshiyuki Kojima

    Journal of the Ceramic Society of Japan   132 ( 7 ) 397 - 402  2024.07  [Refereed]

    Authorship:Lead author

    DOI

  • Synthesis of Calcium-Deficient Tobermorite under Atmospheric Pressure and Its CO2 Adsorption Ability

    YASUE Tamotsu, ASANO Gota, KOJIMA Yoshiyuki, ARAI Yasuo

    Journal of the Ceramic Society of Japan   101 ( 1179 ) 1255 - 1263  1993  [Refereed]

     View Summary

    Synthesis and CO2 adsorption ability of calcium-deficient tobermorite were investigated. The calcium-deficient tobermorites with Ca/(Al+Si) atomic ratios lower than that of the theoretical composition, 0.83, were prepared by the reaction in the system CaCl2-Na2SiO3-AlCl3-H2O under atmospheric pressure. The calcium-deficient tobermorites were characterized by means of X-ray diffraction, thermal analysis (TG-DTA), infrared spectroscopy and chemical analysis. The calcium-deficient tobermorite was formed from starting solutions with Ca/(Al+Si) atomic ratios lower than 0.95. Most Ca2+ ions existing in interlayers of the tobermorite, 20% of total Ca2+, were removed successively by decreasing the initial Ca/(Al+Si) atomic ratio from 0.95 to 0.70, and then the basal spacing of the calcium-deficient tobermorite expanded by replacing one Ca2+ ion site with two Na+ ions until the atomic ratio of 0.7. However, the layer structure of the tobermorite was destroyed at the atomic ratios below 0.7. The amount of Na+ ions to compensate for charge deficiency in calcium-deficient tobermorites obtained at an initial Ca/(Al+Si) atomic ratio of 0.7 and initial Al/(Al+Si) atomic ratio of 0.10 was changeable by number of washings with pure water. The composition after washing was expressed by the formulas of Ca4Na0.4[(Al+Si)6O11H2]⋅4H2O including ion defects after ten times washings (5g/dm3 H2O) and Ca4Na2.1[(Al+Si)6O22H2]⋅4H2O after one time washing (5g/100cm3 H2O). The maximum exchange capacity for Na+→K+ of Na+ present in the calcium-deficient tobermorite was 95meq/100g irrespective of the amount of Na+. The adsorption capacity of CO2 at 60°C in the tobermorite increased with increasing Na/(Al+Si) atomic ratio and reached a maximum value of 3.0mmol/g at the atomic ratio of 0.36. The desorption of CO2 and adsorption of Na+ progressed simultaneously on washing the tobermorite which adsorbed CO2 with 1N NaCl solution. Accordingly the tobermorite washed with NaCl solution was available as CO2 adsorbent. when the adsorption and desorption were repeated many times, the formation of CaCO3 originated from partial carbonation in the tobermorite was unavoidable, and consequently, the adsorption capacity of CO2 decreased successively with increasing recycle number. On the other hand, when the calcium-deficient tobermorite after desorption of CO2 was heated at 200°C, its adsorption capacity was kept at 2.0mmol/g even after using five times.

    DOI DOI2 CiNii

Books and Other Publications

  • 高容量ニカド電池SM120の開発

    竹島宏樹, 青木健一, 三栗谷仁, 淺野秀二, 浅野剛太, 海谷英男, 丸山弘美( Part: Joint author)

    National technical report 40  1994.08

Presentations

  • Aqueous Zinc Secondary Battery Using Phosphorus-Substituted Zinc Silicate as Anode

     [Invited]

    Presentation date: 2024.11

  • 中性電解液とCSHによる亜鉛二次電池の特性改善

    名越隆哉, 浅野剛太, 向後光亨, 梅垣哲士, 小嶋芳行

    2024 年度 材料技術研究協会討論会 

    Presentation date: 2024.11

  • 伝送線モデルを適用した全固体フッ化物電池用電極のインピーダンス解析

    奈良 洋希, 浅野 剛太, 佐藤 和之, 野井 浩祐, 門間 聰之

    第65回電池討論会 

    Presentation date: 2024.11

    Event date:
    2024.11
     
     
  • セメントで包理した水溶液系亜鉛二次電池の特性

    浅野剛太, 名越隆哉, 梅垣哲士, 小嶋芳行

    無機マテリアル学会 第149回 学術講演会 

    Presentation date: 2024.11

    Event date:
    2024.11
     
     
  • 中性電解液とCSHによる亜鉛二次電池の特性改善

    名越隆哉, 浅野剛太, 梅垣哲士, 小嶋芳行

    無機マテリアル学会 第149回 学術講演会 

    Presentation date: 2024.11

    Event date:
    2024.11
     
     
  • Charge-Discharge Bahavior of NMC111 Cathode in Aqueous Zinc Battery

    T. Kousaki, H. Hayashi, H. Nara, A. Gota, T. Momma

    PRiME 2024 October 6-11, 2024 – Honolulu, HI Hawaii Convention Center & Hilton Hawaiian Village 

    Presentation date: 2024.10

  • 亜鉛二次電池用正極への適用に向けた NMC111の脱リチウム処理の挙動

    林宏樹, 甲崎孝裕, 奈良洋希, 浅野剛太, 門間聰之

    電気化学会 第91回大会 

    Presentation date: 2024.03

  • ケイ酸亜鉛を負極に用いた水溶液系亜鉛二次電池

    浅野 剛太, 名越 隆哉, 梅垣 哲士, 小嶋 芳行

    無機マテリアル学会 第147回 学術講演会 

    Presentation date: 2023.11

    Event date:
    2023.11
     
     
  • 層間化合物を用いた亜鉛負極電池の特性評価

    名越隆哉, 浅野剛太, 向後光亨, 梅垣哲士, 小嶋芳行

    第39回日本セラミックス協会関東支部研究発表会 

    Presentation date: 2023.09

  • Aqueous zinc secondary battery using calcium manganese as positive electrode

    G. Asano, T. Nagoshi, T. Umegaki, Y.Kojima  [Invited]

    International Symposium on Inorganic and Environmental Materials 2023 (ISIEM 2023) 

    Presentation date: 2023.06

    Event date:
    2023.06
     
     
  • マンガン酸カルシウムを正極に用いた水溶液系亜鉛二次電池

    浅野 剛太, 名越 隆哉, 梅垣 哲士, 小嶋 芳行

    無機マテリアル学会 第146回 学術講演会 

    Presentation date: 2023.06

    Event date:
    2023.06
     
     
  • 層間化合物を用いた亜鉛負極電池の特性評価

    名越 隆哉, 浅野 剛太, 梅垣 哲士, 小嶋 芳行

    第146回 無機マテリアル学会 学術講演会 

    Presentation date: 2023.06

  • 水系亜鉛負極電池用正極への三元系層状化合物の適用

    林, 宏樹, 浅野, 剛太, 三栗谷, 仁, 門間, 聰之, 逢坂, 哲彌

    第63回電池討論会 

    Presentation date: 2022.11

  • ケイ酸カルシウム水和物を用いた亜鉛イオンの吸放出

    浅野剛太, 名越隆哉, 梅垣哲士, 小嶋芳行

    無機マテリアル学会 第73回総会,第144回 講演会 

    Presentation date: 2022.06

    Event date:
    2022.06
     
     

▼display all

Research Projects

  • 悪性腫瘍のゲノム・エピゲノム解析による病態解明に関する研究

    国立がん研究センター 

    Project Year :

    2023.11
    -
    2027.08
     

    浅野剛太, 後藤孝明

Misc

  • Adsorption and Release Abilities of Zinc Ions Using Calcium Silicate Hydrate and Effect of Its Addition on Reaction for Zinc Anode Batteries

    Journal of the Society of Inorganic Materials, Japan :   30 ( 427 ) 255 - 260  2023.11  [Refereed]

    Authorship:Lead author

Industrial Property Rights

  • 亜鉛2次電池の正極活物質、亜鉛2次電池、および、亜鉛2次電池の製造方法

    逢坂 哲彌, 門間 聰之, 三栗谷 仁, 林 宏樹, 浅野 剛太

    Patent

  • 二次電池、および、積層電池

    逢坂 哲彌, 三栗谷 仁, 児島 映理, 浅野 剛太

    Patent

  • 補聴器用乾燥ケース

    梅田 剛史, 浅野 剛太, 宮地 寿明

    Patent

  • カメラ用補助電源モジュール

    島村 治成, 高村 侯志, 浅野 剛太, 宮久 正春, 芳澤 浩司

    Patent

  • 携帯電話機用充電器

    宮久 正春, 浅野 剛太, 島村 治成

    Patent

  • 補助電源モジュール

    島村 治成, 高村 侯志, 浅野 剛太, 宮久 正春, 芳澤 浩司

    Patent

  • ハイブリッド電源装置

    中嶋 琢也, 木村 忠雄, 浅野 剛太

    Patent

  • アルカリ蓄電池用正極板およびその製造法

    中井 晴也, 笠原 英樹, 海老原 孝, 神成 宏之, 浅野 剛太, 村岡 芳幸

    Patent

  • アルカリ蓄電池

    中井 晴也, 辻 庸一郎, 浅野 剛太, 重松 俊広

    Patent

  • アルカリ蓄電池とその製造方法

    浅野剛太

    Patent

  • 二次電池および充電器ならびにそれらを用いた二次電池システム

    後藤 浩之, 尾崎 文則, 村山 正人, 浅野 剛太, 新田 泰裕, 三栗谷 仁

    Patent

  • 円筒型アルカリ蓄電池とその製造方法

    浅野剛太

    Patent

  • アルカリ蓄電池用3次元発泡基板と電極の製造方法

    浅野 剛太, 三栗谷 仁, 渡辺 清人

    Patent

  • アルカリ蓄電池用3次元発泡基板と電極の製造方法

    浅野剛太

    Patent

  • 角形アルカリ蓄電池およびその製造方法

    浅野 剛太, 尾崎文則, 後藤 浩之

    Patent

  • アルカリ蓄電池およびその製造方法

    北澤 泰志, 青木 健一, 笠原 英男, 浅野 剛太

    Patent

  • 円筒型電池の製造方法

    古屋 諭, 浅野 剛太, 暖水 慶孝, 宮久 正春

    Patent

  • アルカリ蓄電池用極板およびアルカリ蓄電池用極板の製造法およびアルカリ蓄電池

    古屋 諭, 浅野 剛太, 宮久 正春, 潮崎 文史, 稲葉 吉尚

    Patent

  • アルカリ蓄電池の製造方法

    特許2000-215886

    古屋 諭, 浅野 剛太, 宮久 正春, 増井 基秀

    Patent

  • アルカリ蓄電池用電極の製造方法

    浅野 剛太, 中村 靖志, 八尾 剛史

    Patent

  • アルカリ蓄電池用電極の製造方法

    浅野 剛太, 青木 健一, 小西 始

    Patent

  • 電池

    岩瀬 彰, 徳本 忠寛, 青木 健一, 浅野 剛太, 鈴木 憲男

    Patent

▼display all