センゲニ アナンタラジ (センゲニ アナンタラジ)

写真a

所属

理工学術院 理工学術院総合研究所

職名

次席研究員(研究院講師)

兼担 【 表示 / 非表示

  • 理工学術院   先進理工学部

学歴 【 表示 / 非表示

  • 2014年05月
    -
    2018年11月

    Academy of Scientific and Innovative Research (AcSIR), Lab: CSIR - CECRI, Karaikudi, India   Science (Chemical)   Doctor of Philosophy  

  • 2011年06月
    -
    2013年06月

    The Presidency College, Chennai   Chemistry   Master of Science  

  • 2008年06月
    -
    2011年05月

    The Presidency College, Chennai   Chemistry   Bachelor of Science  

  • 2005年10月
    -
    2007年11月

    District Institute for Education and Training, Chennai   Teacher Education  

  • 2004年06月
    -
    2005年05月

    HSC, Tamil Nadu State Board  

全件表示 >>

経歴 【 表示 / 非表示

  • 2021年04月
    -
    継続中

    早稲田大学   Department of Applied Chemistry   Assistant Professor   Part-time Lecturer

  • 2021年04月
    -
    継続中

    早稲田大学   理工学術院総合研究所   Assistant Professor   Junior Researcher

  • 2019年01月
    -
    2021年03月

    早稲田大学   Department of Applied Chemistry   JSPS Postdoctoral Fellow

    22 months with 5 months paternity break

  • 2016年04月
    -
    2018年10月

    CSIR - Central Electrochemical Research Institute   Materials Electrochemistry   Senior Research Fellow (SRF) - CSIR

  • 2014年04月
    -
    2016年04月

    CSIR - Central Electrochemical Research Institute   Materials Electrochemistry   Junior Research Fellow (JRF) - CSIR

所属学協会 【 表示 / 非表示

  • 2019年07月
    -
    継続中

    American Chemical Society, USA

  • 2017年12月
    -
    2018年12月

    The Electrochemical Society, USA

 

研究分野 【 表示 / 非表示

  • ナノ材料科学

  • 基礎物理化学

  • エネルギー化学

  • 分析化学

  • 生物物理、化学物理、ソフトマターの物理

全件表示 >>

研究キーワード 【 表示 / 非表示

  • Water Electrosplitting

  • Materials and Interfaces

  • Electrocatalysis

  • Electrochemistry

論文 【 表示 / 非表示

  • Ru-tweaking of non-precious materials: The tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting

    S. Anantharaj

    Journal of Materials Chemistry A   9 ( 11 ) 6710 - 6731  2021年03月  [査読有り]

    担当区分:筆頭著者, 責任著者

     概要を見る

    Most better performing water splitting electrocatalysts are scarce, and their use increases the cost of production of H viaelectrolysis. Among the best performing noble/precious metal electrocatalysts, Ru is most notable because it acts as an excellent electrocatalyst for both oxidation and reduction reactions of water responsible for the H production. In fact, Ru outperforms Pt/C as the state-of-the-art water reduction electrocatalyst in alkali. However, the cost-wise more expensive Ru (than Pt and Ir) could not be extensively used in water electrolysis to avoid further increase in the cost of H production. Recently, there has been a renewed interest in Ru and is being intensively investigated with various structural and chemical modifications at the nano-level for catalytic water electrolysis with and without other materials. However, there is no comprehensive review that summarizes and analyzes recent developments in water splitting electrocatalysts that are modulated with Ru. Hence, this review is devoted to bringing out the strategies involved in harvesting the best of water splitting electrocatalysts by Ru-tweaking. The same is also benchmarked against their performance at different conditions. Besides, a detailed note on water splitting electrocatalysis and mechanisms involving Ru are given with insights on the phenomena that make it an active interface for water electrolysis. 2 2 2

    DOI

  • Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium

    Sengeni Anantharaj, Hisashi Sugime, Suguru Noda

    Chemical Engineering Journal   408  2021年03月  [査読有り]

    担当区分:筆頭著者, 責任著者

     概要を見る

    Non-oxide/hydroxide hydrogen evolution reaction (HER) catalysts undergo hydroxylation to a significant extent even under reductive condition when exposed to alkali. Actual role of such hydroxylation in alkaline HER electrocatalysis is not previously given any significance. In this study, we report an intriguing finding that nickel sulfide a well-known HER electrocatalyst when subjected to anodic potential cycling covering Ni and Ni redox couple led to accelerated hydroxylation accompanying surface amorphization. As a result, improved electrochemical surface, better HER kinetics, and better charge transfer were achieved that lowering the HER overpotential by 110 mV at 100 mA cm . This surface amorphized and hydroxylated nickel sulfide exhibited excellent stability upon both galvanostatic and potentiostatic electrolysis for over 50 h. Besides, it also showed a lower Tafel slope (120 mV dec ), higher relative ECSA in terms of 2C (3.85 µF cm ), and higher electrochemical accessibility for Ni sites (3.7 × 10 cm ) which further advocate the superiority of our way of improving HER activity of a non-oxide/hydroxide catalyst. Thus, this study open up new avenues for re-examining other non-oxide/hydroxide catalysts in alkaline HER for benefiting the energy and cost-efficient hydrogen generation. 2+ 3+ 2 -1 −2 17 −2 dl

    DOI

  • A bifunctional hexa-filamentous microfibril multimetallic foam: an unconventional high-performance electrode for total water splitting under industrial operation conditions

    Hashikaa Rajan, Maria Christy, Vasanth Rajendiran Jothi, S. Anantharaj, Sung Chul Yi

    Journal of Materials Chemistry A   9 ( 8 ) 4971 - 4983  2021年02月  [査読有り]

    担当区分:責任著者

     概要を見る

    Cellulose in various forms possesses high strength, low density, and high aspect ratio with a three-dimensional open network structure, making them ideal candidates as current collectors in energy conversion application. Herein, a surface rough-cellulose-based bamboo fiber with unique and naturally-convoluted morphology is adopted for the fabrication of catalytically active cobalt substrates for water splitting. For the efficient evolution of hydrogen and oxygen, cobalt-based bimetallic alloys, namely, cobalt-molybdenum and cobalt-iron, were electrodeposited. The proposed system possesses a highly macro-porous network of hexa-filament micro-fibrils that demonstrate exceptional catalytic activities. In quantitative terms, the anodic and cathodic current density of 50 and −10 mA cm at respective overpotentials (η) of 250 and 46 mV with a low activation energy (E ) of 28 kJ mol were achieved. Moreover, when operated under harsh industrial standards of 5 M KOH@343 K, electrodes demonstrate excellent water electrolyzing catalytic activities (η = 147 mV;η = 209 mV). This work, thus, promises a new strategy for designing electrode systems that are highly efficient as well as economical as the substrate was obtained from a ubiquitous earth-friendly material for energy conversion application. −2 −1 a -100(HER) 100(OER)

    DOI

  • “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts

    Sengeni Anantharaj, Subrata Kundu, Suguru Noda

    Nano Energy   80  2021年02月  [査読有り]

    担当区分:筆頭著者, 責任著者

     概要を見る

    Electrocatalytic oxygen evolution reaction (OER) catalyzed by non-precious metals and their compounds in alkaline medium is an attractive area of energy research for the generation of hydrogen from water. The 3d transition metals, particularly, Ni and Co show better OER activity than others in alkaline medium. Ni and Co based oxygen-evolving catalysts (OECs) experience an enormous enhancement in the OER activity either by incidental or intentional Fe doping/incorporation. To account for this, different roles of Fe that it exerts when incorporated into these OECs are reported to be responsible. Unfortunately, the conclusions drawn in many related studies are often contradictory to one another. Important contradictory conclusions are: 1) a few studies claim Fe is the active site and Ni/Co are inactive while other studies claim Ni/Co and Fe act together in OER, 2) a few studies claim Fe stays unoxidized while a few shows evidence for the existence of Fe , and 3) a few studies suggest Fe is the faster site in Ni/Co OEC matrices for OER but fail to explain similar effects observed with other OER matrices. Many critical experimental and theoretical investigations have been made recently to reveal this magical Fe effect and the results of those studies are coherently presented here with critical discussion. This review is presented as it is inevitable to know the critical roles of Fe effect in Ni/Co based OECs to succeed in energy efficient hydrogen generation in alkaline medium. 3+ 4+ 3+

    DOI

  • Pushing the Limits of Rapid Anodic Growth of CuO/Cu(OH)<inf>2</inf>Nanoneedles on Cu for the Methanol Oxidation Reaction: Anodization pH Is the Game Changer

    Sengeni Anantharaj, Hisashi Sugime, Shohei Yamaoka, Suguru Noda

    ACS Applied Energy Materials   4 ( 1 ) 899 - 912  2021年01月  [査読有り]

    担当区分:筆頭著者, 責任著者

     概要を見る

    We recently reported the fastest anodization method (just 80 s) of all for accessing a denser array of Cu(OH)2-CuO nanoneedles on a Cu foil substrate by applying a constant potential of 0.864 V vs a reversible hydrogen electrode in 1.0 M KOH that delivered a better activity for the methanol oxidation reaction (MOR). In this study, we show that the strength of the KOH solution used for anodization alters the size, morphology, surface chemistry, electrochemical accessibility of Cu sites, and the subsequent MOR activity trend. Intriguingly, an increase in KOH solution strength shortens the time of anodization from 80 s (1.0 M KOH) to 20 s with 3.0 M KOH, which in turn drastically reduces to just 6 s with 6.0 M KOH. As of now, this is the shortest time ever achieved for the anodic growth of Cu-OH/O nanoneedles on a Cu substrate. A set of detailed and comparative physical and electrochemical characterizations reveal positive relationships between anodization pH and anodization current, the size of Cu-OH/O nanoneedles grown, rate of growth, electrochemical accessibility of Cu sites, and electrocatalytic MOR activity. Thus, this study provides a universal approach to control the size of Cu-OH/O nanoneedles, electrochemical accessibility of Cu sites, and their subsequent MOR activity.

    DOI

全件表示 >>

受賞 【 表示 / 非表示

  • Distinguished Professor

    2021年03月   Yangzhou University, China  

  • Favorite Tutor Award

    2020年09月   Manonmanium Sundaranar University, Nellai, India  

  • JSPS Standard Postdoc Fellowship

    2018年08月   JSPS, Japan  

  • ECS India Section S. K. Rangarajan Graduate Student Award

    2017年12月   The Electrochemical Society, USA  

  • Senior Research Fellowship

    2016年01月   CSIR, India  

全件表示 >>

共同研究・競争的資金等の研究課題 【 表示 / 非表示

  • 水素の高効率製造に向けた金属カルコゲナイト触媒による水電解の機構研究

    特別研究員奨励費

    研究期間:

    2019年04月
    -
    2021年03月
     

    野田 優, SENGENI ANANTHARAJ

     概要を見る

    遷移金属の水酸化物およびカルコゲナイドを中心に、水電解触媒の最新の研究成果を調査しレビュー論文の執筆・発表を進めた。ニッケルは水素被毒のため水素発生活性が低いが、そのカルコゲナイドは酸およびアルカリの両方で高い水素発生活性を示す。その作用機構と触媒表面の化学変化の重要性を議論、硫化物・セレン化物・テルル化物の活性・選択性・安定性を比較し、今後の研究開発の方向性を示す総説を発表した。また、化学組成に加え結晶構造も水電解活性に大きな影響を持ち、特にアモルファスが結晶よりも高い活性を示す触媒が多数報告されている。多数の触媒材料の既往研究を調査、電解液の触媒内部へのアクセス容易性と電気化学活性表面積の高さ、構造の再構成の容易性と欠陥密度の高さなどその作用機構を議論、今後の研究開発の方向性を示す総説を発表した。
    これらの調査研究をもとにポイントを絞った実験研究も推進した。遷移金属カルコゲナイドは酸素発生反応にも多用されるが、その際はプレ触媒であり、実際には酸化された状態で作用する。CoSe2のアルカリ水電解での酸素発生反応を検討、CoSe2調整時に事前酸化することで活性を大きく向上できることを見出した。また、金属フォームは電極触媒の三次元化に有効であり、銅フォームおよびニッケルフォームの電気化学的処理による触媒形成と水電解の検討を進めている。加えて、カーボンナノチューブ(CNT)の柔軟で良導電性なスポンジ状自立膜を三次元電極とし、その表面にNi(OH)2を電着した触媒の開発も進めている。本Ni(OH)2-CNT複合体は電気化学キャパシタ向けに開発していたものであるが、アルカリ水電解におけるニッケル触媒の実際の化学状態はNi(OH)2であることに着目し転用した。微量のFe添加により酸素発生活性が大きく上がることが知られており、現在、電解槽でのin situ Fe添加の検討を進めている。

  • 水素の高効率製造に向けた金属カルコゲナイト触媒による水電解の機構研究

    特別研究員奨励費

    研究期間:

    2018年11月
    -
    2021年03月
     

    野田 優, SENGENI ANANTHARAJ

 

現在担当している科目 【 表示 / 非表示

担当経験のある科目(授業) 【 表示 / 非表示

  • Chemistry

    2021年04月
    -
    継続中