Updated on 2024/04/14

写真a

 
YAMAGUCHI, Fujio
 
Affiliation
Faculty of Science and Engineering
Job title
Professor Emeritus
Degree
(BLANK) ( Waseda University )
工学博士

Research Experience

  • 1986
    -
    2003

    Waseda University   School of Science and Engineering

  • 1986
    -
    2003

    Professor, School of Science and Engineering,

  • 1977
    -
    1986

    Kyushu Institute of Design

  • 1977
    -
    1986

    Associate Professor, Kyushu Institute of

  •  
     
     

    Waseda University

  •  
     
     

    Design

▼display all

Education Background

  •  
    -
    1959

    Waseda University   School of Science and Engineering  

  •  
    -
    1959

    Waseda University   Faculty of Science and Engineering  

Professional Memberships

  •  
     
     

    日本応用数理学会

  •  
     
     

    ロボット学会

  •  
     
     

    情報処理学会

  •  
     
     

    日本機械学会

  •  
     
     

    精密工学会

Research Interests

  • 設計工学・機械要素・トライボロジー

  • 計算幾何学

  • CAD工学

  • Computer Aided Design Computational Geometry

Awards

  • (R.Vaidyanatha Swamy)Award(インド数学会) ヴァイドヤナサ スワーミ賞

    1994  

 

Works

  • 4次元CAD

    1999
    -
     

  • 4次元CAD

    1998
    -
     

Research Projects

  • 完全同次幾何演算処理

    その他の研究制度

    Project Year :

    1986
    -
     
     

  • 完全4次元幾何演算処理

    その他の研究制度

    Project Year :

    1986
    -
     
     

  • Totally Homogeneous Geometric Processing

    The Other Research Programs

    Project Year :

    1986
    -
     
     

  • Totally Four-dimensional Geometric Processing

    The Other Research Programs

    Project Year :

    1986
    -
     
     

  • 同次曲線、同次曲面

    その他の研究制度

  • 同次幾何的ニュートン・ラフソン法

    その他の研究制度

  • 全立体角投影図からの立体復元

    その他の研究制度

  • ソリッドモデリングシステムの開発

    その他の研究制度

  • 完全4次元処理理論の整備と体系化

    その他の研究制度

▼display all

Misc

  • Efficient method of adaptive sign detection for 4x4 determinants using a standard arithmetic processing unit

    T Yamauchi, N Yoshida, J Doi, F Yamaguchi

    VISUAL COMPUTER   20 ( 1 ) 37 - 46  2004.04

     View Summary

    We propose an efficient and exact method for the adaptive sign detection of 4x4 determinants using a standard arithmetic unit. The entities of determinants are variable length integers (integers of arbitrary bit length). The integers are expressed in 16-bit data units, and the sign detection is reduced to the computation of 4x4 determinants of 16-bit integers. To accelerate the computation, the calculation is performed by using a standard arithmetic unit. We have implemented our method and confirmed that it significantly improves the computation time of 4x4 determinants. The method can be applicable to many geometric algorithms that need the exact sign evaluation of 4x4 determinants, especially to construct robust geometric algorithms.

    DOI

  • A Polyhedral Solid Modeling System Using Exact Integer Arithmetic Based on Homogeneous Processing

    YAMAUCHI Toshiya, YOSHIDA Norimasa, DOI Jun, YAMAGUCHI Fujio

    Journal of the Japan Society of Precision Engineering   Vol.69;No.8 ( 8 ) 1147 - 1153  2003

     View Summary

    In solid modeling systems, the stability of Boolean set operations is an important issue. Solid modeling systems that employ floating-point arithmetic tend to be unstable because of inconsistent decisions caused by numerical errors. The use of exact integer arithmetic solves this problem. By using exact integer arithmetic based on totally homogeneous processing, error-free arithmetic is implemented. In this paper, we propose a robust polyhedral solid modeling system. The system employs exact integer arithmetic based on totally homogeneous processing. All of the numerical data of solid models for Boolean set operations are represented in terms of integer representations. Boolean set operations and transformations of solid models are performed in the integer domain. Several examples of Boolean set operations, which are very difficult in floating point arithmetic, are presented to show that our system does not cause failure in such situations. Methods that improve the efficiency of exact integer arithmetic are also presented to avoid the increase of computation time caused by the increase of the data lengths of integers.

    DOI CiNii

  • 整数演算を用いたソリッドモデラーの最大データ長の制限

    2002年度精密工学会春季大会予稿集    2002

  • 同次幾何的ニュートン法の複素解への適用に関する研究—パラメータの同次化と局所一意性

    2002年度精密工学会春季大会予稿集    2002

  • 全立体角投影図からの3次元立体復元-第3報-Hough変換に関する、双対性を考慮した考察-

    2002年度精密工学会春季大会予稿集    2002

  • 全立体角投影図からの3次元立体復元-第2報-魚眼画像の取得と実画像からの立体復元に向けて

    2002年度精密工学会春季大会予稿集    2002

  • Computer-Aided Geometric Design---A Totally Four-Dimensional Approach---

    Springer-Verlag    2002

  • 完全4次元処理における同次座標の扱い

    2001年度精密工学会春季大会講演論文集    2001

  • 多変数Starm列を利用した曲線・曲面の交点の存在判定

    精密工学会誌/精密工学会   vol.67,No.3(498-503)  2001

    DOI

  • Study of Homogeneous Parameter, Homogeneous Geometric Newton Method

    KIMURA Masanori, YAMAGUCHI Fujio, WATANABE Yoshio

    Journal of the Japan Society of Precision Engineering   67;12 ( 12 ) 1950 - 1955  2001

     View Summary

    This paper proposes a new geometric Newton-Raphson method for dealing with a rational polynomial curve. The algorithm is robust and at the same time locally unique. Although rational polynomial curves and surfaces have become standard forms in computer-aided design, they have many problems. For example, a Newton-Raphson algorithm for dealing with a rational polynomial curve tends to be unstable. This is a fatal problem. We propose to homogenize the coordinates of a rational curve when it is applied to the Newton-Raphson algorithm. Then it becomes very robust. Furthermore the solution point becomes locally unique with respect to an initial parameter range when the parameter is also homogenized in addition to the coordinates, because with this technique we have a freedom of controlling parameter values and we can adjust the increment of the parameter appropriately.

    DOI CiNii

  • 立体復元CADによる三面図教育

    図学研究   35;3  2001

  • 同次パラメータ同次幾何的ニュートン法における解の局所性について

    精密工学会春季大会   p.10  2000

  • 幾何処理システムにおける除算の役割

    日本応用数理学会   p.11  2000

  • 4次元CADの提唱(特別講演)

    日本応用数理学会2000年度年会講演予稿集    2000

  • 浮動小数点ユニットを利用した4×4行列式の適応的符号判定処理

    精密工学会誌/精密工学会   vol.66,No.8(1190-1194)  2000

    DOI

  • 同次化多面体再分割における形状制御

    1999年精密工学会春季大会/精密工学会    1999

  • 同次化NURBSの比較検証

    1999年精密工学会春季大会/精密工学会    1999

  • 正確な演算を利用した曲線・曲面の交点の存在判定

    1999年精密工学会春季大会/精密工学会    1999

  • 交点算出における同次処理の優位性

    1999年精密工学会春季大会/精密工学会    1999

  • 同次ベクトル空間で定義される凸包

    1999年精密工学会春季大会/精密工学会    1999

  • 幾何処理システムにおける除算の役割

    1999年精密工学会春季大会/精密工学会    1999

  • 完全4次元同次処理に基づくCAD(第2報)―ユークリッド処理と同次処理の比較考察

    精密工学会誌/精密工学会   65;1(78-84)  1999

    DOI

  • 同次処理におけるユークリッド計量の扱い

    精密工学会春季大会   p.141  1999

  • 完全同次処理にもとづく標準ファイルフォーマットの提案

    精密工学会秋季大会   pp.84-85  1999

  • 完全4次元同次処理における射影不変性

    精密工学会秋季大会   p.140  1999

  • An Experimental Comparison of the Homogeneous Processing against Euclidean One in Terms of Accuracy

    Sixth SIAM Conference on Geometric Design    1999

  • 超3角形B-repにおける無誤差完全4次元処理を用いた形状演算アルゴリズム

    情報処理学会論文誌   40;9,pp.3471-3482  1999

  • Reconstructing a Polyhedron System with a Mistake-checking Mechanism

    UCHIYAMA Mikio, MASUDA Takashi, NIIYA Hiroshi, YAMAGUCHI Fujio

    Journal of the Japan Society of Precision Engineering   65;8,pp.1106-1110 ( 8 ) 1106 - 1110  1999

     View Summary

    This paper describes the method of reconstructing a polyhedron system with the function of checking mistakes. This function is aimed to find and check mistakes on the three orthographic views, and to inform the mistakes to a user. At the same time, this mistake-checking function has been united to the polyhedron reconstruction system. As a result, we can use this system efficiently. Finally the effectiveness of the mistake-checking mechanism has been comfirmed with respect to many types of polyhedra.

    DOI CiNii

  • 終結式を利用した2次曲線・曲面の干渉処理

    1998年度精密工学会卒業研究発表会/精密工学会    1998

  • 同次化多面体細分割アルゴリズムの構築

    1998年度精密工学会春季大会学術講演会論文集/精密工学会    1998

  • 同次化NURBSの提案―高速かつ無誤差の点列算出―

    1998年度精密工学会春季大会学術講演会論文集/精密工学会    1998

  • 超3角形BRepにおける無誤差完全4次元処理を用いた形状演算

    1998年度精密工学会春季大会学術講演会論文集/精密工学会    1998

  • 4×4行列式を対象とした適応的符号判定処理の高速化

    1998年度精密工学会春季大会学術講演会論文集/精密工学会    1998

  • CAD工学

    培風館    1998

  • 4次元CADのための技術

    第16回設計シンポジウム/精密工学会    1998

  • 同次化NURBS

    精密工学会誌/精密工学会   64;8(1216-1221)  1998

    DOI

  • A Shift of Playground for Geometric Processing from Euclidean to Homogeneous One in Computer Graphics and Geometric Modelling

    The Visual Computer/   14;7(315-327)  1998

    DOI

  • 完全4次元同次処理に基づくCAD(第1報)―理論的背景と概要

    精密工学会誌/精密工学会   64;5 (731-737)  1998

    DOI

  • Adaptive Sign Detection Method Using a Floating Point Processing Unit : Sign Detection for 3×3 Determinants

    HANAMITSU Hiroaki, YOSHIDA Norimasa, LOU Lin, SUZUKI Shigeyuki, YAMAGUCHI Fujio

    Journal of the Japan Society of Precision Engineering   63;5,pp657-663 ( 5 ) 657 - 663  1997.05

     View Summary

    In solid modeling systems, Boolean set operations are very sensitive to numerical errors. These problems can be solved by adopting the variable length integer computations based on the extended 4×4 determinant method. The efficiency of these computations, however, goes to worse as the lengths of integers increase. In practice, many geometric algorithms such as Boolean set operations can be reduced to detecting the signs of determinants. By using the adaptive sign detection method, the signs can be detected in nearly constant time for any length of integer. In this paper, a method is proposed that improves the efficiency of the adaptive sign detection. All of internal numerical computations with this method are processed as the floating point number arithmetic by using an FPU (Floating point Processing Unit). It is remarkable that this method never outputs wrong results although floating point computations are performed. The performance experiment shows that the new sign detection method is about 15 times faster than the old one.

    DOI CiNii

  • The Homogeneous Representation of Quadratic Rational Bezier Curve and NURBS

    LOU Lin, YOSHIDA Norimasa, HANAMITSU Hiroaki, YAMAGICHI Fujio

    Journal of the Japan Society of Precision Engineering   63;4,pp504-508 ( 4 ) 504 - 508  1997.04

     View Summary

    Rational curves such as rational Bézier curves and NURBS are widely being used in CAD and CAGD, and defining them as homogeneous curves in homogeneous space has many advantages in geometric processing. In this paper, some properties of quadratic rational Bézier curves and NURBS defined in homogeneous space are discussed. First, the relationship between the two kinds of homogeneous curves is studied. Secondly, the implicit form of quadratic homogeneous Bézier curves is derived, and by using the implicit form, the inclusion test and the conic classification (hyperbola, parabola, and ellipse) are performed. Finally, the fact that a whole conic can be represented as one homogenized NURBS is shown. The properties discussed here are more general than those of conventional rational curves.

    DOI CiNii

  • 同次パラメータ有理曲線に対する幾何的ニュートン法

    1997年精密工学会春季大会    1997

  • C2-spline曲線による補間曲線の生成

    1997年精密工学会春季大会    1997

  • 同次化NURBS及びその応用アルゴリズム

    1997年精密工学会春季大会    1997

  • FPUを利用した適応的符号判定処理の幾何アルゴリズムへの応用

    1997年精密工学会春季大会    1997

  • クオーターエッジデータ構造への稜線ループの導入

    1997年精密工学会春季大会    1997

  • Some Basic Geometric Test Conditions in Terms of Pliicker Coordinates and Plücker Coefficient

    The Visual Computer   13;1  1997

    DOI

  • 完全4次元処理に基づくCAD

    第7回設計工学・システム部門講演会/日本機械学会    1997

  • 正確な演算を利用した幾何アルゴリズム―現状と今後の展望―

    第55回(平成9年後期)全国大会/情報処理学会    1997

  • 双対原理を利用したソリッドモデリング

    第55回(平成9年後期)全国大会/情報処理学会    1997

  • 完全4次元処理に基づく形状モデリング

    第55回(平成9年後期)全国大会/情報処理学会    1997

  • 同次幾何演算の整数値データ長の増加問題に対する考察

    1997年度精密工学会秋季大会学術講演会論文集/精密工学会    1997

  • 完全4次元処理に基づくCADシステム

    1997年度精密工学会秋季大会学術講演会論文集/精密工学会    1997

  • Some of Basic Geometric Conditions in Terms of Plucker Coordinates and Plucker Coefficients

    Numerical Analysis Reports/University of Cambridge   DAMTP 1996 ( NAO3 )  1996

  • A Gemetric Newton Method for Interference Processing of Rational Curves and Surfaces in Homogeneous Space

    Proceedings of the Sixth IMA Conference on "Mathematics of Surfaces"/Oxford University Press    1996

  • Geometric Computation Based on an Adaptive Data Length Computation Processor

    Computer Graphics International'96    1996

  • 4次元理論による図形・形状処理工学

    日刊工業新聞社    1996

  • 4×4行列式法に基づく2次曲線境界を含むポリゴンに対する点の内外判定

    精密工学会誌   62;12  1996

    DOI

  • 三面図から立体自動復元システムの製図教育への適用

    CIEC会誌   1;1  1996

    DOI

  • Adaptive Sign Detection Method of 4×4 Determinant Method (2nd Report) : Sign Detection Method for Arbitrary Homogeneous Polynomials

    YOSHIDA Norimasa, LOU Lin, SAKANE Kenichi, SAIKA Sadaki, YAMAGUCHI Fujio

    Journal of the Japan Society of Precision Engineering   62;9 ( 9 ) 1267 - 1271  1996

     View Summary

    The theory of the sign detection method that computes the signs of arbitrary integer homogeneous polynomials is presented. The robustness of geometric algorithms is an important issue in geometric modeling. One answer to the robustness is to employ the exact integer arithmetic. This approach makes it possible to achieve the complete robustness of geometric algorithms. In geometric algorithms, signs of polynomials, such as determinants or inner products, are necessary in most cases. The sign detection method determines the signs of polynomials without evaluating them exactly, and improves the computational cost of the exact integer arithmetic. By homogenizing Euclidean coordinates, hence by adding the fourth coordinate in case of 3-dimensional Euclidean coordinates, homogeneous coordinates are obtained. Polynomials that are non-homogeneous become homogeneous by the homogenization. A generalized theory for the sign detection of arbitrary homogeneous polynomials and some characteristics of it are presented.

    DOI CiNii

  • Homogeneous bounding boxes as tools for intersection algorithms of rational Bézier curves and surfaces

    The Visual Computer   12;4  1996

    DOI

  • 4×4行列式法に基づくポリゴンに対する点の内外判定

    精密工学会誌   62;8  1996

    DOI

  • 同次幾何的ニュートン法による有理曲線・曲面に対する干渉処理

    精密工学会誌/精密工学会   61;2  1995

    DOI

  • 超3角形BRepにおけるEdge-basedデータ構造と形状演算アルゴリズム

    情報処理学会論文誌   39;1,pp39-49

▼display all