2022/01/24 更新

写真a

イシイ ヒトシ
石井 仁司
所属
教育・総合科学学術院
職名
名誉教授

学歴

  •  
    -
    1975年

    早稲田大学   理工学研究科   物理学及応用物理学専攻  

  •  
    -
    1970年

    早稲田大学   理工学部   物理学科  

学位

  • 早稲田大学   理学学士

  • 早稲田大学   理学修士

  • 早稲田大学   理学博士

経歴

  • 2018年04月
    -
    継続中

    津田塾大学, 特任研究員

  • 2018年04月
    -
    継続中

    早稲田大学, 名誉教授

  • 2019年05月
     
     

    Sapienza University of Rome   Department of Mathematics   Visiting Professor

  • 2018年05月
     
     

    Sapienza University of Rome   Department of Mathematics   Visiting Professor

  • 2001年04月
    -
    2018年03月

    早稲田大学教育・総合科学学術院(教育学部) 教授

  • 2011年08月
    -
    2014年06月

    King Abdulaziz University, Adjunct Professor

  • 2011年01月
     
     

    College de France, Visiting Professor

  • 2010年09月
    -
    2010年11月

    University of Chicago、Visiting Professor

  • 1997年
    -
    2001年

    東京都立大学大学院理学研究科 教授

  • 1996年
    -
    1997年

    東京都立大学理学部 教授

  • 1989年
    -
    1996年

    中央大学理工学部 教授

  • 1981年
    -
    1989年

    中央大学理工学部 助教授

  • 1976年
    -
    1981年

    中央大学理工学部 専任講師

  • 1975年
    -
    1976年

    早稲田大学理工学研究所奨励研究生

▼全件表示

所属学協会

  •  
     
     

    日本応用数理学会

  •  
     
     

    アメリカ数学会

  •  
     
     

    日本数学会

  •  
     
     

    American Mathematical Society

 

研究分野

  • 応用数学、統計数学

  • 数学基礎

  • 数理解析学

  • 基礎解析学

研究キーワード

  • 退化楕円型方程式

  • 漸近問題

  • ハミルトン・ヤコビ方程式

  • 完全非線形楕円型方程式

  • 曲率流

  • 粘性解理論

  • 最適制御理論

  • 偏微分方程式

▼全件表示

論文

  • Vanishing contact structure problem and convergence of the viscosity solutions

    石井 仁司

    Comm. Partial Differential Equations   44 ( 9 ) 801 - 836  2019年  [査読有り]

  • A family of degenerate elliptic operators: maximum principle and its consequences

    石井 仁司

    Ann. Inst. H. Poincaré Anal. Non Linéaire   35 ( 2 ) 417 - 441  2018年  [査読有り]

    DOI

  • The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems

    Hitoshi Ishii, Hiroyoshi Mitake, Hung V. Tran

    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES   108 ( 3 ) 261 - 305  2017年09月  [査読有り]

     概要を見る

    In [17] (Part 1 of this series), we have introduced a variational approach to studying the vanishing discount problem for fully nonlinear, degenerate elliptic, partial differential equations in a torus. We develop this approach further here to handle boundary value problems. In particular, we establish new representation formulas for solutions of discount problems, critical values, and use them to prove convergence results for the vanishing discount problems. (C) 2016 Elsevier Masson SAS. All rights reserved.

    DOI

  • The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus

    Hitoshi Ishii, Hiroyoshi Mitake, Hung V. Tran

    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES   108 ( 2 ) 125 - 149  2017年08月  [査読有り]

     概要を見る

    We develop a variational approach to the vanishing discount problem for fully nonlinear, degenerate elliptic, partial differential equations. Under mild assumptions, we introduce viscosity Mather measures for such partial differential equations, which are natural extensions of the Mather measures. Using the viscosity Mather measures, we prove that the whole family of solutions v(lambda) of the discount problem with the factor lambda > 0 converges to a solution of the ergodic problem as lambda -> 0. (C) 2016 Elsevier Masson SAS. All rights reserved.

    DOI

  • ON VISCOSITY SOLUTION OF HJB EQUATIONS WITH STATE CONSTRAINTS AND REFLECTION CONTROL

    Anup Biswas, Hitoshi Ishii, Subhamay Saha, Lin Wang

    SIAM JOURNAL ON CONTROL AND OPTIMIZATION   55 ( 1 ) 365 - 396  2017年  [査読有り]

     概要を見る

    Motivated by a control problem of a certain queueing network we consider a control problem where the dynamics is constrained in the nonnegative orthant R-+(d) of the d-dimensional Euclidean space and controlled by the reflections at the faces/boundaries. We define a discounted value function associated to this problem and show that the value function is a viscosity solution to a certain HJB equation in R-+(d) with nonlinear Neumann type boundary condition. Under certain conditions, we also characterize this value function as the unique solution to this HJB equation.

    DOI

  • Metastability for parabolic equations with drift: Part II. The quasilinear case

    石井 仁司

    Indiana Univ. Math. J.   66 ( 1 ) 315 - 367  2017年  [査読有り]

  • On the Langevin equation with variable friction

    石井 仁司

    Calc. Var. Partial Differential Equations   56 ( 6 )  2017年  [査読有り]

  • A convergence result for the ergodic problem for Hamilton-Jacobi equations with Neumann-type boundary conditions

    Eman S. Al-Aidarous, Ebraheem O. Alzahrani, Hitoshi Ishii, Arshad M. M. Younas

    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS   146 ( 2 ) 225 - 242  2016年04月  [査読有り]

     概要を見る

    We consider the ergodic (or additive eigenvalue) problem for the Neumann- type boundary-value problem for Hamilton-Jacobi equations and the corresponding discounted problems. Denoting by u(lambda) the solution of the discounted problem with discount factor lambda > 0, we establish the convergence of the whole family {u(lambda)} lambda > 0 to a solution of the ergodic problem as.. 0, and give a representation formula for the limit function via the Mather measures and Peierls function. As an interesting by-product, we introduce Mather measures associated with Hamilton-Jacobi equations with the Neumann- type boundary conditions. These results are variants of the main results in a recent paper by Davini et al., who study the same convergence problem on smooth compact manifolds without boundary.

    DOI

  • Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls, II

    Norihisa Ikoma, Hitoshi Ishii

    BULLETIN OF MATHEMATICAL SCIENCES   5 ( 3 ) 451 - 510  2015年10月  [査読有り]  [招待有り]

     概要を見る

    This is a continuation of Ikoma and Ishii (Ann Inst H Poincar, Anal Non Lin,aire 29:783-812, 2012) and we study the eigenvalue problem for fully nonlinear elliptic operators, positively homogeneous of degree one, on finite intervals or balls. In the multi-dimensional case, we consider only radial eigenpairs. Our eigenvalue problem has a general first-order boundary condition which includes, as a special case, the Dirichlet, Neumann and Robin boundary conditions. Given a nonnegative integer n, we prove the existence and uniqueness, modulo multiplication of the eigenfunction by a positive constant, of an eigenpair whose eigenfunction, as a radial function in the multi-dimensional case, has exactly n zeroes. When an eigenfunction has n zeroes, we call the corresponding eigenvalue of nth order. Furthermore, we establish results concerning comparison of two eigenvalues, characterizations of nth order eigenvalues via differential inequalities, the maximum principle for the boundary value problem in connection with the principal eigenvalue, and existence of a solution having n zeroes, as a radial function in the multi-dimensional case, of the boundary value problem with an inhomogeneous term.

    DOI

  • Metastability for Parabolic Equations with Drift: Part I

    Hitoshi Ishii, Panagiotis E. Souganidis

    INDIANA UNIVERSITY MATHEMATICS JOURNAL   64 ( 3 ) 875 - 913  2015年  [査読有り]

     概要を見る

    We study the exponentially long-time behavior of solutions to linear uniformly parabolic equations that are small perturbations of transport equations with vector fields having a globally stable (attractive) equilibrium in the domain. The result is that the solutions converge to a constant, which is either the initial value at the stable point or the boundary value at the minimum of the associated quasi-potential. Problems of this type were considered by Freidlin and Wentzell and Freidlin and Koralov, using probabilistic arguments related to the theory of large deviations. Our approach, which is self-contained, relies entirely on pde arguments, and is flexible to the extent that allows us to study a class of semilinear equations of similar structure. This note also prepares the ground for the forthcoming Part II of this work where we consider general quasilinear problems.

    DOI

  • Asymptotic analysis for the eikonal equation with the dynamical boundary conditions

    Eman S. Al-Aidarous, Ebraheem O. Alzahrani, Hitoshi Ishii, Arshad M. M. Younas

    MATHEMATISCHE NACHRICHTEN   287 ( 14-15 ) 1563 - 1588  2014年10月  [査読有り]

     概要を見る

    We study the dynamical boundary value problem for Hamilton-Jacobi equations of the eikonal type with a small parameter. We establish two results concerning the asymptotic behavior of solutions of the Hamilton-Jacobi equations: one concerns with the convergence of solutions as the parameter goes to zero and the other with the large-time asymptotics of solutions of the limit equation. (C) 2014 The Authors. Mathematische Nachrichten published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim.

    DOI

  • A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations

    Guy Barles, Hitoshi Ishii, Hiroyoshi Mitake

    BULLETIN OF MATHEMATICAL SCIENCES   3 ( 3 ) 363 - 388  2013年12月  [査読有り]  [招待有り]

     概要を見る

    We introduce a new PDE approach to establishing the large time asymptotic behavior of solutions of Hamilton-Jacobi equations, which modifies and simplifies the previous ones (Barles et al. in Arch Ration Mech Anal 204(2):515-558, 2012; Barles and Souganidis in SIAM J Math Anal 31(4):925-939, 2000), under a refined "strict convexity" assumption on the Hamiltonians. Not only such "strict convexity" conditions generalize the corresponding requirements on the Hamiltonians in Barles and Souganidis (SLAM J Math Anal 31(4):925-939, 2000), but also one of the most refined our conditions covers the situation studied in Namah and Roquejoffre (Commun Partial Differ Equ 24(5-6):883-893, 1999).

    DOI

  • A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations

    Hitoshi Ishii

    HAMILTON-JACOBI EQUATIONS: APPROXIMATIONS, NUMERICAL ANALYSIS AND APPLICATIONS, CETRARO, ITALY 2011   2074   111 - 249  2013年  [査読有り]  [招待有り]

     概要を見る

    We present an introduction to the theory of viscosity solutions of first-order partial differential equations and a review on the optimal control/dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, with the Neumann boundary condition. This article also includes some of basics of mathematical analysis related to the optimal control/dynamical approach for easy accessibility to the topics.

    DOI

  • Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls

    Norihisa Ikoma, Hitoshi Ishii

    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE   29 ( 5 ) 783 - 812  2012年09月  [査読有り]

     概要を見る

    We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction. (c) 2012 Elsevier Masson SAS. All rights reserved.

    DOI

  • UNIQUENESS SETS FOR MINIMIZATION FORMULAS

    Yasuhiro Fujita, Hitoshi Ishii

    DIFFERENTIAL AND INTEGRAL EQUATIONS   25 ( 5-6 ) 579 - 588  2012年05月  [査読有り]

     概要を見る

    In this paper, we consider minimization formulas which arise typically in optimal control and weak KAM theory for Hamilton-Jacobi equations. Given a minimization formula, we define a uniqueness set for the formula, which replaces the original region of minimization without changing its values. Our goal is to provide a necessary and sufficient condition that a given set be a uniqueness set. We also provide a characterization of the existence of a minimal uniqueness set with respect to set inclusion.

  • On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations Associated with Nonlinear Boundary Conditions

    Guy Barles, Hitoshi Ishii, Hiroyoshi Mitake

    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS   204 ( 2 ) 515 - 558  2012年05月  [査読有り]

     概要を見る

    In this article, we study the large time behavior of solutions of first-order Hamilton-Jacobi Equations set in a bounded domain with nonlinear Neumann boundary conditions, including the case of dynamical boundary conditions. We establish general convergence results for viscosity solutions of these Cauchy-Neumann problems by using two fairly different methods: the first one relies only on partial differential equations methods, which provides results even when the Hamiltonians are not convex, and the second one is an optimal control/dynamical system approach, named the "weak KAM approach", which requires the convexity of Hamiltonians and gives formulas for asymptotic solutions based on Aubry-Mather sets.

    DOI

  • A pde approach to small stochastic perturbations of Hamiltonian flows

    Hitoshi Ishii, Panagiotis E. Souganidis

    JOURNAL OF DIFFERENTIAL EQUATIONS   252 ( 2 ) 1748 - 1775  2012年01月  [査読有り]

     概要を見る

    In this note we present a unified approach, based on pde methods, for the study of averaging principles for (small) stochastic perturbations of Hamiltonian flows in two space dimensions. Such problems were introduced by Freidlin and Wentzell and have been the subject of extensive study in the last few years using probabilistic arguments. When the Hamiltonian flow has critical points, it exhibits complicated behavior near the critical points under a small stochastic perturbation. Asymptotically the slow (averaged) motion takes place on a graph. The issues are to identify both the equations on the sides and the boundary conditions at the vertices of the graph. Our approach is very general and applies also to degenerate anisotropic elliptic operators which could not be considered using the previous methodology. (C) 2011 Elsevier Inc. All rights reserved.

    DOI

  • Long-time asymptotic solutions of convex Hamilton-Jacobi equations with Neumann type boundary conditions

    Hitoshi Ishii

    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS   42 ( 1-2 ) 189 - 209  2011年09月  [査読有り]

     概要を見る

    We study the long-time asymptotic behavior of solutions u of the Hamilton-Jacobi equation u(tau)(x, t) + H(x, Du(x, t)) = 0 in Omega x (0, infinity), where Omega is a bounded open subset of R(n), with Hamiltonian H = H(x, p) being convex and coercive in p, and establish the uniform convergence of u to an asymptotic solution as t -> infinity.

    DOI

  • Weak KAM aspects of convex Hamilton-Jacobi equations with Neumann type boundary conditions

    Hitoshi Ishii

    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES   95 ( 1 ) 99 - 135  2011年01月  [査読有り]

     概要を見る

    We study convex Hamilton-Jacobi equations H(x, Du) = 0 and u(t) + H(x, Du) = 0 in a bounded domain Omega of R-n with the Neumann type boundary condition D(gamma)u = g in the viewpoint of weak KAM theory, where gamma is a vector field on the boundary partial derivative Omega pointing a direction oblique to partial derivative Omega. We establish the stability under the formations of infimum and of convex combinations of subsolutions of convex Hamilton-Jacobi equations, some comparison and existence results for convex and coercive Hamilton-Jacobi equations with the Neumann type boundary condition as well as existence results for the Skorokhod problem. We define the Aubry set associated with the Neumann type boundary problem and establish some properties of the Aubry set including the existence results for the "calibrated" extremals for the corresponding action functional (or variational problem). (C) 2010 Elsevier Masson SAS. All rights reserved.

    DOI

  • Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space

    Hitoshi Ishii

    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE   25 ( 2 ) 231 - 266  2008年

     概要を見る

    We study the large time behavior of solutions of the Cauchy problem for the Hamilton-Jacobi equation u(t) + H(x, Du) = 0 in R-n x (0, infinity), where H(x, p) is continuous on R-n x R-n and convex in p. We establish a general convergence result for viscosity solutions u(x, t) of the Cauchy problem as t -> infinity . (C) 2007 Elsevier Masson SAS. All rights reserved.

    DOI

  • Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic Hamiltonians

    Naoyuki Ichihara, Hitoshi Ishii

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   33 ( 5 ) 784 - 807  2008年

     概要を見る

    We study the long time behavior of viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations in n. We prove that if the Hamiltonian H(x, p) is coercive and strictly convex in a mild sense in p and upper semi-periodic in x, then any solution of the Cauchy problem "converges" to an asymptotic solution for any lower semi-almost periodic initial function.

    DOI

  • The large-time behavior of solutions of Hamilton-Jacobi equations on the real line

    N. Ichihara, H. Ishii

    Methods Appl. Anal.   15 ( 2 ) 223 - 242  2008年

  • Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians

    Hitoshi Ishii, Hiroyoshi Mitake

    INDIANA UNIVERSITY MATHEMATICS JOURNAL   56 ( 5 ) 2159 - 2183  2007年

     概要を見る

    We establish general representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians. In order to treat representation formulas on general domains, we introduce a notion of ideal boundary similar to the Martin boundary [21] in potential theory. We apply such representation formulas to investigate maximal solutions, in certain classes of functions, of Hamilton-Jacobi equations. Part of the results in this paper has been announced in [22].

    DOI

  • Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator

    Y Fujita, H Ishii, P Loreti

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   31 ( 6 ) 827 - 848  2006年06月

     概要を見る

    We study the long time behavior of solutions of the Cauchy problem for semilinear parabolic equations with the Ornstein-Uhlenbeck operator in R-N . The long time behavior in the main results is stated with help of the corresponding to ergodic problem, which complements, in the case of unbounded domains, the recent developments on long time behaviors of solutions of (viscous) Hamilton-Jacobi equations due to Namah (1996), Namah and Roquejoffre (1999), Roquejoffre (1998), Fathi (1998), Barles and Souganidis (2000, 2001). We also establish existence and uniqueness results for solutions of the Cauchy problem and ergodic problem for semilinear parabolic equations with the Ornstein-Uhlenbeck operator.

    DOI

  • Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space

    Yasuhiro Fujita, Hitoshi Ishii, Paola Loreti

    INDIANA UNIVERSITY MATHEMATICS JOURNAL   55 ( 5 ) 1671 - 1700  2006年

     概要を見る

    We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + alpha x (.) Du + H(Du) = f(x) in R-n X (0, infinity), where alpha is a positive constant and H is a convex function on Rn, and establish a convergence result for the viscosity solution u(x, t) as t -> infinity.

    DOI

  • Convexified Gauss curvature flow of sets: A stochastic approximation

    Hitoshi Ishii, Toshio Mikami

    SIAM Journal on Mathematical Analysis   36 ( 2 ) 552 - 579  2005年

     概要を見る

    We construct a discrete stochastic approximation of a convexified Gauss curvature flow of boundaries of bounded open sets in an anisotropic external field. We also show that a weak solution to the PDE which describes the motion of a bounded open set is unique and is a viscosity solution of it. © 2004 Society for Industrial and Applied Mathematics.

    DOI

  • Limits of solutions of p-laplace equations as p goes to infinity and related variational problems

    H Ishii, P Loreti

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   37 ( 2 ) 411 - 437  2005年

     概要を見る

    We show that the convergence, as p --> infinity, of the solution u(p) of the Dirichlet problem for -Delta p(u)(x) = f(x) in a bounded domain Omega subset of R-n with zero-Dirichlet boundary condition and with continuous f in the following cases: (i) one-dimensional case, radial cases; (ii) the case of no balanced family; and (iii) two cases with vanishing integral. We also give some properties of the maximizers for the functional integral(Omega) f(x)v(x) dx in the space of functions v is an element of C((Omega) over bar) boolean AND W-1,W-infinity (Omega) satisfying v\(theta Omega) = 0 and parallel to Dv parallel to(L infinity(Omega)) <= 1.

    DOI

  • Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain

    H Ishii, MH Sato

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   57 ( 7-8 ) 1077 - 1098  2004年06月

     概要を見る

    We establish comparison and existence theorems of viscosity solutions of the initial-boundary value problem for some singular degenerate parabolic partial differential equations with nonlinear oblique derivative boundary conditions. The theorems cover the capillary problem for the mean curvature flow equation and apply to more general Neumann-type boundary problems for parabolic equations in the level set approach to motion of hypersurfaces with velocity depending on the normal direction and curvature. (C) 2004 Elsevier Ltd. All rights reserved.

    DOI

  • Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain

    H Ishii, MH Sato

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   57 ( 7-8 ) 1077 - 1098  2004年06月

     概要を見る

    We establish comparison and existence theorems of viscosity solutions of the initial-boundary value problem for some singular degenerate parabolic partial differential equations with nonlinear oblique derivative boundary conditions. The theorems cover the capillary problem for the mean curvature flow equation and apply to more general Neumann-type boundary problems for parabolic equations in the level set approach to motion of hypersurfaces with velocity depending on the normal direction and curvature. (C) 2004 Elsevier Ltd. All rights reserved.

    DOI

  • Motion of a graph by R-curvature

    H Ishii, T Mikami

    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS   171 ( 1 ) 1 - 23  2004年01月

     概要を見る

    We show the existence of weak solutions to the partial differential equation which describes the motion by R-curvature in R-d, by the continuum limit of a class of infinite particle systems. We also show that weak solutions of the partial differential equation are viscosity solutions and give the uniqueness result on both weak and viscosity solutions.

    DOI

  • Convexified gauss curvature flow of sets: A stochastic approximation

    H Ishii, T Mikami

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   36 ( 2 ) 552 - 579  2004年

     概要を見る

    We construct a discrete stochastic approximation of a convexified Gauss curvature flow of boundaries of bounded open sets in an anisotropic external field. We also show that a weak solution to the PDE which describes the motion of a bounded open set is unique and is a viscosity solution of it.

    DOI

  • A level set approach to the wearing process of a nonconvex stone

    H Ishii, T Mikami

    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS   19 ( 1 ) 53 - 93  2004年

     概要を見る

    We study the geometric evolution of a nonconvex stone by the wearing process via the partial differential equation methods. We use the so-called level set approach to this geometric evolution of a set. We establish a comparison theorem, an existence theorem, and some stability properties of solutions of the partial differential equation arising in this level set approach, and define the flow of a set by the wearing process via the level set approach.

    DOI

  • Motion of a graph by R-curvature

    H Ishii, T Mikami

    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS   171 ( 1 ) 1 - 23  2004年01月

     概要を見る

    We show the existence of weak solutions to the partial differential equation which describes the motion by R-curvature in R-d, by the continuum limit of a class of infinite particle systems. We also show that weak solutions of the partial differential equation are viscosity solutions and give the uniqueness result on both weak and viscosity solutions.

    DOI

  • A level set approach to the wearing process of a nonconvex stone

    H Ishii, T Mikami

    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS   19 ( 1 ) 53 - 93  2004年

     概要を見る

    We study the geometric evolution of a nonconvex stone by the wearing process via the partial differential equation methods. We use the so-called level set approach to this geometric evolution of a set. We establish a comparison theorem, an existence theorem, and some stability properties of solutions of the partial differential equation arising in this level set approach, and define the flow of a set by the wearing process via the level set approach.

    DOI

  • Simultaneous Effects of Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations

    Hitoshi Ishii

    Funkcialaj Ekvacioj   46 ( 1 ) 63 - 88  2003年

    DOI

  • Relaxation of Hamilton-Jacobi equations

    H. Ishii, P. Loreti

    Arch. Ration. Mech. Anal.   169 ( 4 ) 264 - 305  2003年

    DOI

  • Relaxation in an L-optimization problem

    H. Ishii, P. Loreti

    Proc. Roy. Soc. Edinburgh Sect. A   133 ( 3 ) 599 - 615  2003年

  • Asymptotic analysis for a class of infinite systems of first-order PDE: nonlinear parabolic PDE in the singular limit

    H. Ishii, K. Shimano

    Comm. Partial Differential Equations   28 ( 1-2 ) 409 - 438  2003年

  • Simultaneous effects of homogenization and vanishing viscosity in fully nonlinear elliptic equations

    K. Horie, H. Ishii

    Funkcial. Ekvac.   46 ( 1 ) 63 - 88  2003年

  • Relaxation of Hamilton-Jacobi equations

    H. Ishii, P. Loreti

    Arch. Ration. Mech. Anal.   169 ( 4 ) 264 - 305  2003年

    DOI

  • Relaxation in an L-optimization problem

    H. Ishii, P. Loreti

    Proc. Roy. Soc. Edinburgh Sect. A   133 ( 3 ) 599 - 615  2003年

  • Asymptotic analysis for a class of infinite systems of first-order PDE: Nonlinear parabolic PDE in the singular limit

    H Ishii, K Shimano

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   28 ( 1-2 ) 409 - 438  2003年

     概要を見る

    We study the asymptotic behavior of solutions of the Cauchy problem for a functional partial differential equation with a small parameter as the parameter tends to zero. We establish a convergence theorem in which the limit problem is identified with the Cauchy problem for a nonlinear parabolic partial differential equation. We also present comparison and existence results for the Cauchy problem for the functional partial differential equation and the limit problem.

    DOI

  • A two-dimensional random crystalline algorithm for Gauss curvature flow

    H. Ishii, T. Mikami

    Advances in Applied Probability   34 ( 3 ) 491 - 504  2002年09月

     概要を見る

    A two-dimensional random crystalline algorithm was proposed for Gauss curvature flow. Gauss curvature flow of smooth closed convex hypersurfaces in Rd+1 was defined. A discrete-time approximation scheme for Gauss curvature flow was briefly described.

    DOI

  • A two-dimensional random crystalline algorithm for Gauss curvature flow

    H Ishii, T Mikami

    ADVANCES IN APPLIED PROBABILITY   34 ( 3 ) 491 - 504  2002年09月

     概要を見る

    We propose and study a random crystalline algorithm (a discrete approximation) of the Gauss curvature flow of smooth simple closed convex curves in R-2 as a stepping stone to the full understanding of such phenomena as the wearing process of stones on a beach.

    DOI

  • A class of Stochastic optimal control problems with state constraint

    H Ishii, P Loreti

    INDIANA UNIVERSITY MATHEMATICS JOURNAL   51 ( 5 ) 1167 - 1196  2002年

     概要を見る

    We investigate, via the dynamic programming approach, optimal control problems of infinite horizon with state constraint, where the state X-t is given as a solution of a controlled stochastic differential equation and the state constraint is described either by the condition that X-t is an element of (G) over bar for all t > 0 or by the condition that X-t is an element of G for all t > 0, where G be a given open subset of R-N. Under the assumption that for each z is an element of partial derivativeG there exists a, G A, where A denotes the control set, such that the diffusion matrix sigma (x, a) vanishes for a = a(z) and for x is an element of partial derivativeG in a neighborhood of z and the drift vector b(x, a) directs inside of G at z for a = az and x = z as well as some other mild assumptions, we establish the unique existence of a continuous viscosity solution of the state constraint problem for the associated Hamilton-jacobi-Bellman equation, prove that the value functions V associated with the constraint (G) over bar, V-r of the relaxed problem associated with the constraint (G) over bar, and V-o associated with the constraint G, satisfy in the viscosity sense the state constraint problem, and establish Holder regularity results for the viscosity solution of the state constraint problem.

  • Fully nonlinear oblique derivative problems for singular degenerate parabolic equations

    H. Ishii

    数理解析研究所講究録   1287   164 - 170  2002年

  • A class of Stochastic optimal control problems with state constraint

    H Ishii, P Loreti

    INDIANA UNIVERSITY MATHEMATICS JOURNAL   51 ( 5 ) 1167 - 1196  2002年

     概要を見る

    We investigate, via the dynamic programming approach, optimal control problems of infinite horizon with state constraint, where the state X-t is given as a solution of a controlled stochastic differential equation and the state constraint is described either by the condition that X-t is an element of (G) over bar for all t > 0 or by the condition that X-t is an element of G for all t > 0, where G be a given open subset of R-N. Under the assumption that for each z is an element of partial derivativeG there exists a, G A, where A denotes the control set, such that the diffusion matrix sigma (x, a) vanishes for a = a(z) and for x is an element of partial derivativeG in a neighborhood of z and the drift vector b(x, a) directs inside of G at z for a = az and x = z as well as some other mild assumptions, we establish the unique existence of a continuous viscosity solution of the state constraint problem for the associated Hamilton-jacobi-Bellman equation, prove that the value functions V associated with the constraint (G) over bar, V-r of the relaxed problem associated with the constraint (G) over bar, and V-o associated with the constraint G, satisfy in the viscosity sense the state constraint problem, and establish Holder regularity results for the viscosity solution of the state constraint problem.

  • Fully nonlinear oblique derivative problems for singular degenerate parabolic equations

    H. Ishii

    数理解析研究所講究録   1287   164 - 170  2002年

  • A mathematical model of the wearing process of a nonconvex stone

    H Ishii, T Mikami

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   33 ( 4 ) 860 - 876  2001年12月

     概要を見る

    We formulate the wearing process of a nonconvex stone in terms of partial differential equations (PDEs). We establish a comparison theorem, an existence theorem, and some stability properties of solutions of this PDE.

    DOI

  • An approximation scheme for motion by mean curvature with right-angle boundary condition

    H Ishii, K Ishii

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   33 ( 2 ) 369 - 389  2001年09月

     概要を見る

    We show that the algorithm considered by Ishii [GAKUTO Internat. Ser. Math. Sci. Appl. 5, Gakkotosho, Tokyo, 1995, pp. 111-127] and Ishii, Pires, and Souganidis [J. Math. Soc. Japan, 50 (1999), pp. 267-308] can be applied to motion by mean curvature with right-angle boundary condition.

  • An approximation scheme for motion by mean curvature with right-angle boundary condition

    H Ishii, K Ishii

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   33 ( 2 ) 369 - 389  2001年09月

     概要を見る

    We show that the algorithm considered by Ishii [GAKUTO Internat. Ser. Math. Sci. Appl. 5, Gakkotosho, Tokyo, 1995, pp. 111-127] and Ishii, Pires, and Souganidis [J. Math. Soc. Japan, 50 (1999), pp. 267-308] can be applied to motion by mean curvature with right-angle boundary condition.

  • Hamilton-Jacobi equations with partial gradient and application to homogenization

    O Alvarez, H Ishii

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   26 ( 5-6 ) 983 - 1002  2001年

     概要を見る

    The paper proves that the Dirichlet problem for the first-order Hamilton-Jacobi equation in an open subset of R-n
    H (x, u, D(x ')u) = 0 in Omega, u = g on partial derivative Omega,
    where D(x ')u is the partial gradient of the scalar function u with respect to the first n ' variables (n ' less than or equal to n), has a viscosity solution which is unique a.e. When applied to the periodic homogenization of Hamilton-Jacobi equations in a perforated set, the result yields the a.e. convergence of the solutions of the problem at scale epsilon as epsilon --> 0 to the solution of the homogenized Hamilton-Jacobi equation.

  • On the rate of convergence in homogenization of Hamilton-Jacobi equations

    I. Capuzzo Dolcetta, H. Ishii

    Indiana Univ. Math. J.   50 ( 3 ) 1113 - 1129  2001年

  • A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity

    H. Ishii

    Proc. Roy. Soc. Edinburgh Sect. A   131 ( 1 ) 137 - 154  2001年

  • Hamilton-Jacobi equations with partial gradient and application to homogenization

    O Alvarez, H Ishii

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   26 ( 5-6 ) 983 - 1002  2001年

     概要を見る

    The paper proves that the Dirichlet problem for the first-order Hamilton-Jacobi equation in an open subset of R-n
    H (x, u, D(x ')u) = 0 in Omega, u = g on partial derivative Omega,
    where D(x ')u is the partial gradient of the scalar function u with respect to the first n ' variables (n ' less than or equal to n), has a viscosity solution which is unique a.e. When applied to the periodic homogenization of Hamilton-Jacobi equations in a perforated set, the result yields the a.e. convergence of the solutions of the problem at scale epsilon as epsilon --> 0 to the solution of the homogenized Hamilton-Jacobi equation.

  • On the rate of convergence in homogenization of Hamilton-Jacobi equations

    I. Capuzzo Dolcetta, H. Ishii

    Indiana Univ. Math. J.   50 ( 3 ) 1113 - 1129  2001年

  • A mathematical model of the wearing process of a nonconvex stone

    Hitoshi Ishii, Toshio Mikami

    SIAM Journal on Mathematical Analysis   33 ( 4 ) 860 - 876  2001年

     概要を見る

    We formulate the wearing process of a nonconvex stone in terms of partial differential equations (PDEs). We establish a comparison theorem, an existence theorem, and some stability properties of solutions of this PDE.

    DOI

  • A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity

    H. Ishii

    Proc. Roy. Soc. Edinburgh Sect. A   131 ( 1 ) 137 - 154  2001年

  • On ε-optimal controls for state constraint problems

    H. Ishii, S. Koike

    Ann. Inst. H. Poincare Anal. Non Lineaire   17 ( 4 ) 473 - 502  2000年07月

  • A PDE approach to stochastic invariance

    H Ishii, P Loreti, ME Tessitore

    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS   6 ( 3 ) 651 - 664  2000年07月

     概要を見る

    We study an invariance property for a controlled stochastic differential equation and give a few of its characterizations in connection with the corresponding Hamilton-Jacobi-Bellman equation.

  • On ε-optimal controls for state constraint problems

    H. Ishii, S. Koike

    Ann. Inst. H. Poincare Anal. Non Lineaire   17 ( 4 ) 473 - 502  2000年07月

  • A PDE approach to stochastic invariance

    H Ishii, P Loreti, ME Tessitore

    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS   6 ( 3 ) 651 - 664  2000年07月

     概要を見る

    We study an invariance property for a controlled stochastic differential equation and give a few of its characterizations in connection with the corresponding Hamilton-Jacobi-Bellman equation.

  • A Dirichlet type problem for nonlinear degenerate elliptic equations arising in

    M. Bardi, P. Goatin, H. Ishii

    Adv. Math. Sci. Appl.   10 ( 1 ) 329 - 352  2000年

  • A characterization of the existence of solutions for Hamilton-Jacobi equations

    M. Arisawa, H. Ishii, P.-L. Lions

    Appl. Math. Optim.   42 ( 1 ) 35 - 50  2000年

    DOI

  • A Dirichlet type problem for nonlinear degenerate elliptic equations arising in

    M. Bardi, P. Goatin, H. Ishii

    Adv. Math. Sci. Appl.   10 ( 1 ) 329 - 352  2000年

  • A characterization of the existence of solutions for Hamilton-Jacobi equations

    M. Arisawa, H. Ishii, P.-L. Lions

    Appl. Math. Optim.   42 ( 1 ) 35 - 50  2000年

    DOI

  • On the rate of convergence in homogenization of Hamilton-Jacobi equations

    I. Capuzzo Dolcetta, H. Ishii

    International Conference on Differential Equations/World Sci. Publishing    2000年

  • Gauss curvature flow and its approximation

    H. Ishii

    Free boundary problems : theory and applications, GAKUTO Internat. Ser. Math. Sci. Appl.    2000年

  • Threshold dynamics type approximation schemes for propagating fronts

    H Ishii, GE Pires, PE Souganidis

    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN   51 ( 2 ) 267 - 308  1999年04月

     概要を見る

    We study the convergence of general threshold dynamics type approximation schemes to hypersurfaces moving with normal velocity depending on the normal direction and the curvature tensor. We also present results about the asymptotic shape of fronts propagating by threshold dynamics. Our results generalize and extend models introduced in the theories of cellular automaton and motion by mean curvature.

    DOI

  • Threshold dynamics type approximation schemes for propagating fronts

    H Ishii, GE Pires, PE Souganidis

    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN   51 ( 2 ) 267 - 308  1999年04月

     概要を見る

    We study the convergence of general threshold dynamics type approximation schemes to hypersurfaces moving with normal velocity depending on the normal direction and the curvature tensor. We also present results about the asymptotic shape of fronts propagating by threshold dynamics. Our results generalize and extend models introduced in the theories of cellular automaton and motion by mean curvature.

    DOI

  • Hopf-Lax formulas for semicontinuous data

    O. Alvarez, E. N. Barron, H. Ishii

    Indiana Univ. Math. J.   48 ( 3 ) 993 - 1035  1999年

  • Hopf-Lax formulas for Hamilton-Jacobi equations with semicontinuous initial data

    H. Ishii

    Singularity theory and differential equations   1111   144 - 156  1999年

  • Homogenization of the Cauchy problem for Hamilton-Jacobi equations

    H. Ishii

    Stochastic analysis, control, optimization and applications     305 - 324  1999年

  • Waiting time effects for Gauss curvature flows

    D. Chopp, L. C. Evans, H. Ishii

    Indiana Univ. Math. J.   48 ( 1 ) 311 - 334  1999年

  • Hopf-Lax formulas for semicontinuous data

    O. Alvarez, E. N. Barron, H. Ishii

    Indiana Univ. Math. J.   48 ( 3 ) 993 - 1035  1999年

  • Hopf-Lax formulas for Hamilton-Jacobi equations with semicontinuous initial data

    H. Ishii

    Singularity theory and differential equations   1111   144 - 156  1999年

  • Waiting time effects for Gauss curvature flows

    D. Chopp, L. C. Evans, H. Ishii

    Indiana Univ. Math. J.   48 ( 1 ) 311 - 334  1999年

  • Homogenization of the Cauchy problem for Hamilton-Jacobi equations

    H. Ishii

    Systems Control Found. Appl./Birkhauser    1999年

  • Some properties of ergodic attractors for controlled dynamical systems

    M. Arisawa, H. Ishii

    Discrete Contin. Dynam. Systems   4 ( 1 ) 43 - 54  1998年

  • Homogenization of Hamilton-Jacobi equations on domains with small scale periodic structure

    K. Horie, H. Ishii

    Indiana Univ. Math. J.   47 ( 3 ) 1011 - 1058  1998年

  • An approximation scheme for Gauss curvature flow

    H. Ishii

    数理解析研究所講究録   No. 1061   108 - 123  1998年

  • Some properties of ergodic attractors for controlled dynamical systems

    M. Arisawa, H. Ishii

    Discrete Contin. Dynam. Systems   4 ( 1 ) 43 - 54  1998年

  • Homogenization of Hamilton-Jacobi equations on domains with small scale periodic structure

    K. Horie, H. Ishii

    Indiana Univ. Math. J.   47 ( 3 ) 1011 - 1058  1998年

  • An approximation scheme for Gauss curvature flow

    H. Ishii

    数理解析研究所講究録   No. 1061   108 - 123  1998年

  • The level set method for etching and deposition

    D Adalsteinsson, LC Evans, H Ishii

    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES   7 ( 8 ) 1153 - 1186  1997年12月

     概要を見る

    We provide a rigorous interpretation of the level set approach to certain nonlocal geometric motions modelling etching effects in manufacture. The shadowing of certain parts of a surface by other parts gives rise to a nonlocal Hamilton-Jacobi type PDE, with a multivalued Hamiltonian. We also show that deposition effects do not fall within the conventional level set framework, and accordingly must be reinterpreted for numerical implementation.

  • The level set method for etching and deposition

    D Adalsteinsson, LC Evans, H Ishii

    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES   7 ( 8 ) 1153 - 1186  1997年12月

     概要を見る

    We provide a rigorous interpretation of the level set approach to certain nonlocal geometric motions modelling etching effects in manufacture. The shadowing of certain parts of a surface by other parts gives rise to a nonlocal Hamilton-Jacobi type PDE, with a multivalued Hamiltonian. We also show that deposition effects do not fall within the conventional level set framework, and accordingly must be reinterpreted for numerical implementation.

  • Un contre-exemple pour la theorie du controle ergodique en dimension infinie

    M. Arisawa, H. Ishii, P.-L. Lions

    C. R. Acad. Sci. Paris Ser. I Math.   325 ( 1 ) 37 - 41  1997年

  • Viscosity solutions and their applications

    H. Ishii

    Sugaku Expositions   10 ( 2 ) 123 - 141  1997年

  • Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above

    H. Ishii

    Appl. Anal.   67; 3-4, pp. 357--372  1997年

  • Un contre-exemple pour la theorie du controle ergodique en dimension infinie

    M. Arisawa, H. Ishii, P.-L. Lions

    C. R. Acad. Sci. Paris Ser. I Math.   325 ( 1 ) 37 - 41  1997年

  • Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above

    H. Ishii

    Appl. Anal.   67 ( 3-4 ) 357 - 372  1997年

  • A new formulation of state constraint problems for first-order PDES

    H Ishii, S Koike

    SIAM JOURNAL ON CONTROL AND OPTIMIZATION   34 ( 2 ) 554 - 571  1996年03月

     概要を見る

    The first-order Hamilton-Jacobi-Bellman equation associated with the state constraint problem for optimal control is studied. Instead of the boundary condition which Soner introduced, a new and appropriate boundary condition for the PDE is proposed. The uniqueness and Lipschitz continuity of viscosity solutions for the boundary value problem are obtained.

    DOI

  • A new formulation of state constraint problems for first-order PDEs

    H. Ishii, S. Koike

    SIAM J. Control Optim.   34 ( 2 ) 554 - 571  1996年

    DOI

  • Viscosity solutions of nonlinear partial differential equations

    H. Ishii

    Sugaku Expositions   9 ( 2 ) 135 - 152  1996年

  • Degenerate parabolic PDEs with discontinuities and generalized evolutions of surfaces

    H. Ishii

    Adv. Differential Equations   1 ( 1 ) 51 - 72  1996年

  • Degenerate parabolic PDEs with discontinuities and generalized evolutions of surfaces

    H. Ishii

    Adv. Differential Equations   1 ( 1 ) 51 - 72  1996年

  • A singular limit on risk sensitive control and semi-classical analysis

    H. Ishii, H. Nagai, F. Teramoto

       1996年

  • GENERALIZED MOTION OF NONCOMPACT HYPERSURFACES WITH VELOCITY HAVING ARBITRARY GROWTH ON THE CURVATURE TENSOR

    H ISHII, P SOUGANIDIS

    TOHOKU MATHEMATICAL JOURNAL   47 ( 2 ) 227 - 250  1995年06月

     概要を見る

    In this note we study the generalized motion of noncompact hyper-surfaces with normal velocity depending on the normal direction and the curvature tensor. This work extends the by-now-classical works of Evans and Spruck (for mean curvature) and Chen, Giga and Goto (for general motions with sublinear curvature dependence), because it allows general dependence on the curvature tensor. It also allows a general treatment of the generalized evolution including noncompact hypersurfaces. A number of results regarding no interior, convexity, etc. are also presented.

  • GENERALIZED MOTION OF NONCOMPACT HYPERSURFACES WITH VELOCITY HAVING ARBITRARY GROWTH ON THE CURVATURE TENSOR

    H ISHII, P SOUGANIDIS

    TOHOKU MATHEMATICAL JOURNAL   47 ( 2 ) 227 - 250  1995年06月

     概要を見る

    In this note we study the generalized motion of noncompact hyper-surfaces with normal velocity depending on the normal direction and the curvature tensor. This work extends the by-now-classical works of Evans and Spruck (for mean curvature) and Chen, Giga and Goto (for general motions with sublinear curvature dependence), because it allows general dependence on the curvature tensor. It also allows a general treatment of the generalized evolution including noncompact hypersurfaces. A number of results regarding no interior, convexity, etc. are also presented.

  • UNIQUENESS RESULTS FOR A CLASS OF HAMILTON-JACOBI EQUATIONS WITH SINGULAR COEFFICIENTS

    H ISHII, M RAMASWAMY

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   20 ( 11-12 ) 2187 - 2213  1995年

     概要を見る

    We establish uniqueness or comparison results for a class of Hamilton-Jacobi equations and give characterizations of maximal solutions of Hamilton-Jacobi equations. The results are applied to characterizing value functions of exit time problems in optimal control.

  • On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions

    H. Ishii

    Funkcial. Ekvac.   38 ( 1 ) 101 - 120  1995年

  • UNIQUENESS RESULTS FOR A CLASS OF HAMILTON-JACOBI EQUATIONS WITH SINGULAR COEFFICIENTS

    H ISHII, M RAMASWAMY

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   20 ( 11-12 ) 2187 - 2213  1995年

     概要を見る

    We establish uniqueness or comparison results for a class of Hamilton-Jacobi equations and give characterizations of maximal solutions of Hamilton-Jacobi equations. The results are applied to characterizing value functions of exit time problems in optimal control.

  • Viscosity solutions and their applications

    H. Ishii

    Sugaku   47 ( 2 ) 97 - 110  1995年

  • On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions

    H. Ishii

    Funkcial. Ekvac.   38 ( 1 ) 101 - 120  1995年

  • A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature

    H. Ishii

    Curvature flows and related topics    1995年

  • 非線形偏微分方程式の粘性解について

    石井 仁司

    数学   46 ( 2 ) 144 - 157  1994年05月

    DOI CiNii

  • On the uniqueness and existence of solutions of fully nonlinear parabolic PDEs under the Osgood type condition

    H. Ishii, K. Kobayasi

    Differential Integral Equations   7 ( 3-4 ) 909 - 920  1994年

  • On the uniqueness and existence of solutions of fully nonlinear parabolic PDEs under the Osgood type condition

    H. Ishii, K. Kobayasi

    Differential Integral Equations   7 ( 3-4 ) 909 - 920  1994年

  • Viscosity solutions of nonlinear partial differential equations

    H. Ishii

    数学 (Sugaku Expositions; 1996)   46 ( 2 ) 144 - 151  1994年

  • The maximum principle for degenerate parabolic PDEs with singularities

    H. Ishii

    Miniconference on Analysis and Applications    1994年

  • SDES WITH OBLIQUE REFLECTION ON NONSMOOTH DOMAINS

    P DUPUIS, H ISHII

    ANNALS OF PROBABILITY   21 ( 1 ) 554 - 580  1993年01月

     概要を見る

    In this paper we consider stochastic differential equations with reflecting boundary conditions for domains that might have corners and for which the allowed directions of reflection at a point on the boundary of the domain are possibly oblique. The main results are strong existence and uniqueness for solutions of such equations. A key ingredient is a family of relatively regular functions appropriate to the given domain and directions of reflection. Two cases are treated in the paper. In the first case the direction of reflection is single valued and varies smoothly, and the main new feature is that the boundary of the domain may be nonsmooth. In the second case the domain is taken to be the intersection of a finite number of domains with relatively smooth boundary, and at the resulting corner points more than one oblique direction is allowed.

  • Uniqueness of solutions to the Cauchy problem for υt-υΔυ+γ|∇υ|2=0

    I. Fukuda, H. Ishii, M. Tsutsumi

    Differential Integral Equations   6 ( 6 ) 1231 - 1252  1993年

  • Viscosity solutions of functional -differential equations

    H. Ishii, S. Koike

    Adv. Math. Sci. Appl.   3   191 - 218  1993年

  • Viscosity solutions of nonlinear second-order partial differential equations in hilbert spaces

    Ishii Hitoshi

    Communications in Partial Differential Equations   18 ( 3-4 ) 601 - 650  1993年01月

    DOI

  • SDES WITH OBLIQUE REFLECTION ON NONSMOOTH DOMAINS

    P DUPUIS, H ISHII

    ANNALS OF PROBABILITY   21 ( 1 ) 554 - 580  1993年01月

     概要を見る

    In this paper we consider stochastic differential equations with reflecting boundary conditions for domains that might have corners and for which the allowed directions of reflection at a point on the boundary of the domain are possibly oblique. The main results are strong existence and uniqueness for solutions of such equations. A key ingredient is a family of relatively regular functions appropriate to the given domain and directions of reflection. Two cases are treated in the paper. In the first case the direction of reflection is single valued and varies smoothly, and the main new feature is that the boundary of the domain may be nonsmooth. In the second case the domain is taken to be the intersection of a finite number of domains with relatively smooth boundary, and at the resulting corner points more than one oblique direction is allowed.

  • Uniqueness of solutions to the Cauchy problem for υt-υΔυ+γ|∇υ|2=0

    I. Fukuda, H. Ishii, M. Tsutsumi

    Differential Integral Equations   6 ( 6 ) 1231 - 1252  1993年

  • Viscosity solutions of functional -differential equations

    H. Ishii, S. Koike

    Adv. Math. Sci. Appl.   3   191 - 218  1993年

  • Viscosity solutions of nonlinear second-order partial differential equations in Hilbert spaces

    H. Ishii

    Comm. Partial Differential Equations   18 ( 3-4 ) 601 - 650  1993年

  • GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR INTERFACE EQUATIONS COUPLED WITH DIFFUSION-EQUATIONS

    Y GIGA, S GOTO, H ISHII

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   23 ( 4 ) 821 - 835  1992年07月

     概要を見る

    A weak formulation for an interface dynamics coupled with a diffusion equation is introduced. A global-in-time weak solution is constructed for an arbitrary initial data under a periodic boundary condition. The result applies to the interface equation obtained as a certain singular limit of some reaction-diffusion systems including the activator-inhibitor model.

  • GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR INTERFACE EQUATIONS COUPLED WITH DIFFUSION-EQUATIONS

    Y GIGA, S GOTO, H ISHII

    SIAM JOURNAL ON MATHEMATICAL ANALYSIS   23 ( 4 ) 821 - 835  1992年07月

     概要を見る

    A weak formulation for an interface dynamics coupled with a diffusion equation is introduced. A global-in-time weak solution is constructed for an arbitrary initial data under a periodic boundary condition. The result applies to the interface equation obtained as a certain singular limit of some reaction-diffusion systems including the activator-inhibitor model.

  • VISCOSITY SOLUTIONS FOR A CLASS OF HAMILTON-JACOBI EQUATIONS IN HILBERT-SPACES

    H ISHII

    JOURNAL OF FUNCTIONAL ANALYSIS   105 ( 2 ) 301 - 341  1992年05月

  • User's guide to viscosity solutions of second order partial differential equations

    M. G. Crandall, H. Ishii, P.-L. Lions

    Bull. Amer. Math. Soc. (N. S.)   27 ( 1 ) 1 - 67  1992年

  • Perron's method for monotone systems of second-order elliptic partial differential equations

    H. Ishii

    Differential Integral Equations   5 ( 1 ) 1 - 24  1992年

  • User's guide to viscosity solutions of second order partial differential equations

    M. G. Crandall, H. Ishii, P.-L. Lions

    Bull. Amer. Math. Soc. (N. S.)   27 ( 1 ) 1 - 67  1992年

  • Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces

    Hitoshi Ishii

    J. Funct. Anal.   105 ( 2 ) 301 - 341  1992年

  • Perron's method for monotone systems of second-order elliptic partial differential equations

    H. Ishii

    Differential Integral Equations   5 ( 1 ) 1 - 24  1992年

  • Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains

    Y. Giga, S. Goto, H. Ishii, M.-H. Sato

    Indiana Univ. Math. J.   40 ( 2 ) 443 - 470  1991年

  • On oblique derivative problems for fully nonlinear second-order elliptic PDE’s on domains with corners

    Paul Dupuis, Hitoshi Ishii

    Hokkaido Mathematical Journal   20 ( 1 ) 135 - 164  1991年

    DOI

  • On Lipschitz continuity of thesolution mapping to the Skorokhod problem, with applications

    P. Dupuis, H. Ishii

    Stochastics Stochastics Rep.   35 ( 1 ) 31 - 62  1991年

  • Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games

    Hitoshi Ishii, Shigeaki Koike

    Funkcial. Ekvac.   34 ( 1 ) 143 - 155  1991年

  • Viscosity solutions for monotone systems of second-order elliptic PDEs

    Hitoshi Ishii, Shigeaki Koike

    Comm. Partial Differential Equations   16 ( 6-7 ) 1095 - 1128  1991年

  • REMARKS ON ELLIPTIC SINGULAR PERTURBATION PROBLEMS

    H ISHII, S KOIKE

    APPLIED MATHEMATICS AND OPTIMIZATION   23 ( 1 ) 1 - 15  1991年01月

     概要を見る

    We show the effectiveness of viscosity-solution methods in asymptotic problems for second-order elliptic partial differential equations (PDEs) with a small parameter. Our stress here is on the point that the methods, based on stability results [3], [16], apply without hard PDE calculations. We treat two examples from [11] and [23]. Moreover, we generalize the results to those for Hamilton-Jacobi-Bellman equations with a small parameter.

    DOI

  • VISCOSITY SOLUTIONS OF THE BELLMAN EQUATION ON AN ATTAINABLE SET

    H ISHII, JL MENALDI, L ZAREMBA

    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII   20 ( 5 ) 317 - 328  1991年

     概要を見る

    By an appropriate modification of the viscosity solution concept, we introduce a notion solution of a PDE that is applicable, among others, to the Bellman equation and first general classes of optimal control problems with the only restriction on a payoff functional that the stopping time is bounded by a fixed number T. We consider this PDE on the attainable set from OMEGA-0, a set Of given initial conditions. We prove both existence and uniqueness results for optimal control problems. The approach is illustrated with several examples and comments.

  • Fully nonlinear oblique derivative problems for nonlinear second-order elliptic pde’s

    Hitoshi Ishii

    Duke Mathematical Journal   62 ( 3 ) 633 - 661  1991年

    DOI

  • Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains

    Y. Giga, S. Goto, H. Ishii, M.-H. Sato

    Indiana Univ. Math. J.   40 ( 2 ) 443 - 470  1991年

  • On oblique derivative problems for fully nonlinear second-order elliptic PDE’s on domains with corners

    Paul Dupuis, Hitoshi Ishii

    Hokkaido Mathematical Journal   20 ( 1 ) 135 - 164  1991年

    DOI

  • On Lipschitz continuity of thesolution mapping to the Skorokhod problem, with applications

    P. Dupuis, H. Ishii

    Stochastics Stochastics Rep.   35 ( 1 ) 31 - 62  1991年

  • Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games

    Hitoshi Ishii, Shigeaki Koike

    Funkcial. Ekvac.   34 ( 1 ) 143 - 155  1991年

  • Viscosity solutions for monotone systems of second-order elliptic PDEs

    Hitoshi Ishii, Shigeaki Koike

    Comm. Partial Differential Equations   16 ( 6-7 ) 1095 - 1128  1991年

  • REMARKS ON ELLIPTIC SINGULAR PERTURBATION PROBLEMS

    H ISHII, S KOIKE

    APPLIED MATHEMATICS AND OPTIMIZATION   23 ( 1 ) 1 - 15  1991年01月

     概要を見る

    We show the effectiveness of viscosity-solution methods in asymptotic problems for second-order elliptic partial differential equations (PDEs) with a small parameter. Our stress here is on the point that the methods, based on stability results [3], [16], apply without hard PDE calculations. We treat two examples from [11] and [23]. Moreover, we generalize the results to those for Hamilton-Jacobi-Bellman equations with a small parameter.

    DOI

  • VISCOSITY SOLUTIONS OF THE BELLMAN EQUATION ON AN ATTAINABLE SET

    H ISHII, JL MENALDI, L ZAREMBA

    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII   20 ( 5 ) 317 - 328  1991年

     概要を見る

    By an appropriate modification of the viscosity solution concept, we introduce a notion solution of a PDE that is applicable, among others, to the Bellman equation and first general classes of optimal control problems with the only restriction on a payoff functional that the stopping time is bounded by a fixed number T. We consider this PDE on the attainable set from OMEGA-0, a set Of given initial conditions. We prove both existence and uniqueness results for optimal control problems. The approach is illustrated with several examples and comments.

  • Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDEs

    Hitoshi Ishii

    Duke Math. J.   62 ( 3 ) 633 - 661  1991年

  • On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains

    p. Dupuis, H. Ishii

    Nonlinear Anal.   15 ( 12 ) 1123 - 1138  1990年

  • A VISCOSITY SOLUTION APPROACH TO THE ASYMPTOTIC ANALYSIS OF QUEUING-SYSTEMS

    P DUPUIS, H ISHII, HM SONER

    ANNALS OF PROBABILITY   18 ( 1 ) 226 - 255  1990年01月

  • The maximum principle for semicontinuous functions

    M. G. Crandall, H. Ishii

    Differential Integral Equations   3 ( 6 ) 1001 - 1014  1990年

  • Viscosity solutions of fully nonlinear second-order elliptic partial differential equations

    Hitoshi Ishii, P.-L. Lions

    J. Differential Equations   83 ( 1 ) 26 - 78  1990年

  • On oblique derivative problems for fully nonlinear second-order elliptic partial differential equations on nonsmooth domains

    p. Dupuis, H. Ishii

    Nonlinear Anal.   15 ( 12 ) 1123 - 1138  1990年

  • A VISCOSITY SOLUTION APPROACH TO THE ASYMPTOTIC ANALYSIS OF QUEUING-SYSTEMS

    P DUPUIS, H ISHII, HM SONER

    ANNALS OF PROBABILITY   18 ( 1 ) 226 - 255  1990年01月

  • The maximum principle for semicontinuous functions

    M. G. Crandall, H. Ishii

    Differential Integral Equations   3 ( 6 ) 1001 - 1014  1990年

  • Viscosity solutions of fully nonlinear second-order elliptic partial differential equations

    Hitoshi Ishii, P.-L. Lions

    J. Differential Equations   83 ( 1 ) 26 - 78  1990年

  • A REMARK ON A SYSTEM OF INEQUALITIES WITH BILATERAL OBSTACLES

    H ISHII, N YAMADA

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   13 ( 11 ) 1295 - 1301  1989年11月

  • A REMARK ON A SYSTEM OF INEQUALITIES WITH BILATERAL OBSTACLES

    H ISHII, N YAMADA

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   13 ( 11 ) 1295 - 1301  1989年11月

  • THE BELLMAN EQUATION FOR MINIMIZING THE MAXIMUM COST

    EN BARRON, H ISHII

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   13 ( 9 ) 1067 - 1090  1989年09月

  • THE BELLMAN EQUATION FOR MINIMIZING THE MAXIMUM COST

    EN BARRON, H ISHII

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   13 ( 9 ) 1067 - 1090  1989年09月

  • On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's

    Hitoshi Ishii

    Communications on Pure and Applied Mathematics   42 ( 1 ) 15 - 45  1989年

     概要を見る

    We prove several comparison and existence theorems for viscosity solutions of fully nonlinear degenerate elliptic equations. One of them extends some recent uniqueness results by Jensen. Some establish the uniqueness of solutions for second‐order Isaacs' equations and hence include the uniqueness results for Bellman equations by P.‐L. Lions. Our comparison results apply even for discontinuous solutions and so Perron's method readily yields the existence of continuous solutions. Copyright © 1989 Wiley Periodicals, Inc., A Wiley Company

    DOI

  • A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations

    Hitoshi Ishii

    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)   16 ( 1 ) 105 - 135  1989年

  • On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs

    Hitoshi Ishii

    Comm. Pure Appl. Math.   42 ( 1 ) 15 - 45  1989年

  • A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations

    Hitoshi Ishii

    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)   16 ( 1 ) 105 - 135  1989年

  • REPRESENTATION OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

    H ISHII

    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS   12 ( 2 ) 121 - 146  1988年02月

  • Representation of solutions of Hamilton-Jacobi equations

    Hitoshi Ishii

    Nonlinear Anal.   12 ( 2 ) 121 - 146  1988年

  • PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS

    H ISHII

    DUKE MATHEMATICAL JOURNAL   55 ( 2 ) 369 - 384  1987年06月

  • A SIMPLE, DIRECT PROOF OF UNIQUENESS FOR SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS OF EIKONAL TYPE

    H ISHII

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   100 ( 2 ) 247 - 251  1987年06月

  • Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited

    M. G. Crandall, H. Ishii, P.-L. Lions

    J. Math. Soc. Japan   39 ( 4 ) 581 - 596  1987年

  • A simple, direct proof of uniqueness for solutions of the hamilton-jacobi equations of eikonal type

    Hitoshi Ishii

    Proceedings of the American Mathematical Society   100 ( 2 ) 247 - 251  1987年

     概要を見る

    We present a new, direct proof of the uniqueness theorem for a class of Hamilton-Jacobi equations including the eikonal equation in geometric optics. © 1987 American Mathematical Society.

    DOI

  • Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited

    M. G. Crandall, H. Ishii, P.-L. Lions

    J. Math. Soc. Japan   39 ( 4 ) 581 - 596  1987年

  • Perron’s method for Hamilton-Jacobi equations

    Hitoshi Ishii

    Duke Mathematical Journal   55 ( 2 ) 369 - 384  1987年

    DOI

  • Existence and uniqueness of solutions of Hamilton-Jacobi equations

    Hitoshi Ishii

    Funkcial. Ekvac.   29 ( 2 ) 167 - 188  1986年

  • Existence and uniqueness of solutions of Hamilton-Jacobi equations

    Hitoshi Ishii

    Funkcial. Ekvac.   29 ( 2 ) 167 - 188  1986年

  • A PDE APPROACH TO SOME ASYMPTOTIC PROBLEMS CONCERNING RANDOM DIFFERENTIAL-EQUATIONS WITH SMALL NOISE INTENSITIES

    LC EVANS, H ISHII

    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE   2 ( 1 ) 1 - 20  1985年

  • Boundary estimates for bounded solutions of a classical Yang-Mills equation

    H.Ishii, K.Nakamitsu

    Math. Japon.   30 ( 2 ) 199 - 215  1985年

  • A nonlinear diffusion equation in phytoplankton dynamics with self-shading effect

    Hitoshi Ishii, Izumi Takagi

    Mathematics in biology and medicine, Lecture Notes in Biomath.   57   66 - 71  1985年

  • Theory of the existence and uniqueness of viscosity solutions of Hamilton-Jacobi equations and its applications

    Hitoshi Ishii

    数理解析研究所講究録   559   162 - 181  1985年

  • Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets.

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   28   33 - 77  1985年

  • A PDE APPROACH TO SOME ASYMPTOTIC PROBLEMS CONCERNING RANDOM DIFFERENTIAL-EQUATIONS WITH SMALL NOISE INTENSITIES

    LC EVANS, H ISHII

    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE   2 ( 1 ) 1 - 20  1985年

  • Boundary estimates for bounded solutions of a classical Yang-Mills equation

    H.Ishii, K.Nakamitsu

    Math. Japon.   30 ( 2 ) 199 - 215  1985年

  • A nonlinear diffusion equation in phytoplankton dynamics with self-shading effect

    Hitoshi Ishii, Izumi Takagi

    Mathematics in biology and medicine, Lecture Notes in Biomath.   57   66 - 71  1985年

  • Theory of the existence and uniqueness of viscosity solutions of Hamilton-Jacobi equations and its applications

    Hitoshi Ishii

    数理解析研究所講究録   559   162 - 181  1985年

  • Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   28   33 - 77  1985年

  • Recent developments in the theory of Hamilton-Jacobi equations

    H. Ishii

    Essays in celebration of the 100th anniversary of Chuo University    1985年

  • On representations of solutions of Hamilton-Jacobi equations with convex Hamiltonians

    H. Ishii

    Recent topics in nonlinear PDE, North-Holland Math. Stud.    1985年

  • Differential games and nonlinear first order PDE on bounded domains

    L. C. Evans, H. Ishii

    Manuscripta Math.   49 ( 2 ) 109 - 139  1984年

  • APPROXIMATE SOLUTIONS OF THE BELLMAN EQUATION OF DETERMINISTIC CONTROL-THEORY

    IC DOLCETTA, H ISHII

    APPLIED MATHEMATICS AND OPTIMIZATION   11 ( 2 ) 161 - 181  1984年

  • Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations

    Hitoshi Ishii

    Indiana Univ. Math. J.   33 ( 5 ) 721 - 748  1984年

  • Differential games and nonlinear first order PDE on bounded domains

    L. C. Evans, H. Ishii

    Manuscripta Math.   49 ( 2 ) 109 - 139  1984年

  • APPROXIMATE SOLUTIONS OF THE BELLMAN EQUATION OF DETERMINISTIC CONTROL-THEORY

    IC DOLCETTA, H ISHII

    APPLIED MATHEMATICS AND OPTIMIZATION   11 ( 2 ) 161 - 181  1984年

  • UNIQUENESS OF UNBOUNDED VISCOSITY SOLUTION OF HAMILTON-JACOBI EQUATIONS

    H ISHII

    INDIANA UNIVERSITY MATHEMATICS JOURNAL   33 ( 5 ) 721 - 748  1984年

  • BOUNDARY-REGULARITY AND UNIQUENESS FOR AN ELLIPTIC EQUATION WITH GRADIENT CONSTRAINT

    H ISHII, S KOIKE

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   8 ( 4 ) 317 - 346  1983年

  • Remarks on existence of viscosity solutions of Hamilton-Jacobi equations

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   26   5 - 24  1983年

  • BOUNDARY-REGULARITY AND UNIQUENESS FOR AN ELLIPTIC EQUATION WITH GRADIENT CONSTRAINT

    H ISHII, S KOIKE

    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS   8 ( 4 ) 317 - 346  1983年

  • Remarks on existence of viscosity solutions of Hamilton-Jacobi equations

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   26   5 - 24  1983年

  • GLOBAL STABILITY OF STATIONARY SOLUTIONS TO A NON-LINEAR DIFFUSION EQUATION IN PHYTOPLANKTON DYNAMICS

    H ISHII, TAKAGI, I

    JOURNAL OF MATHEMATICAL BIOLOGY   16 ( 1 ) 1 - 24  1982年

  • On the existence of almost periodic complete trajectories for contractive almost periodic processes

    Hitoshi Ishii

    J. Differential Equations   43 ( 1 ) 66 - 72  1982年

  • GLOBAL STABILITY OF STATIONARY SOLUTIONS TO A NON-LINEAR DIFFUSION EQUATION IN PHYTOPLANKTON DYNAMICS

    H ISHII, TAKAGI, I

    JOURNAL OF MATHEMATICAL BIOLOGY   16 ( 1 ) 1 - 24  1982年

  • ON THE EXISTENCE OF ALMOST PERIODIC COMPLETE TRAJECTORIES FOR CONTRACTIVE ALMOST PERIODIC PROCESSES

    H ISHII

    JOURNAL OF DIFFERENTIAL EQUATIONS   43 ( 1 ) 66 - 72  1982年

  • On a certain estimate of the free boundary in the Stefan problem

    Hitoshi Ishii

    Journal of Differential Equations   42 ( 1 ) 106 - 115  1981年

    DOI

  • ON A CERTAIN ESTIMATE OF THE FREE-BOUNDARY IN THE STEFAN PROBLEM

    H ISHII

    JOURNAL OF DIFFERENTIAL EQUATIONS   42 ( 1 ) 106 - 115  1981年

  • Remarks on evolution equations with almost periodic forcing terms

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   23   55 - 71  1980年

  • Erratum : "Asymptotic stability of almost periodic solutions of a free boundary problem arising in hydraulics"

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   23   83 - 83  1980年

  • Asymptotic stability and existence of almost periodic solutions for the one-dimensional two-phase Stefan problem

    Hitoshi Ishii

    Math. Japon.   25 ( 4 ) 379 - 393  1980年

  • Remarks on evolution equations with almost periodic forcing terms

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   23   55 - 71  1980年

  • Erratum : "Asymptotic stability of almost periodic solutions of a free boundary problem arising in hydraulics"

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   23   83 - 83  1980年

  • Asymptotic stability and existence of almost periodic solutions for the one-dimensional two-phase Stefan problem

    Hitoshi Ishii

    Math. Japon.   25 ( 4 ) 379 - 393  1980年

  • Asymptotic stability of almost periodic solutions of a free boundary problem arising in hydraulics

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   22   73 - 95  1979年

  • Asymptotic stability of almost periodic solutions of a free boundary problem arising in hydraulics

    Hitoshi Ishii

    Bull. Fac. Sci. Engrg. Chuo Univ.   22   73 - 95  1979年

  • Asymptotic stability and blowing up of solutions of some nonlinear equations

    Hitoshi Ishii

    J. Differential Equations   26 ( 2 ) 291 - 319  1977年

  • Asymptotic stability and blowing up of solutions of some nonlinear equations

    Hitoshi Ishii

    J. Differential Equations   26 ( 2 ) 291 - 319  1977年

  • On the solutions of the Navier-Stokes equations of slightly compressible fluids

    R. Iino, H. Ishii, Y. Machino

    Bull. Sci. Engrg. Res. Lab. Waseda Univ.   69   74 - 79  1975年

  • Some uniqueness theorems for first order hyperbolic systems

    Hitoshi Ishii, Yoshinori Sagisaka, Masayoshi Tsutsumi

    Publ. Res. Inst. Math. Sci.   11 ( 2 ) 403 - 415  1975年

  • On some perturbation of the Navier-Stokes equations in Lp spaces

    Hitoshi Ishii

    Funkcial. Ekvac.   18 ( 1 ) 73 - 83  1975年

  • On the solutions of the Navier-Stokes equations of slightly compressible fluids

    R. Iino, H. Ishii, Y. Machino

    Bull. Sci. Engrg. Res. Lab. Waseda Univ.   69   74 - 79  1975年

  • Some uniqueness theorems for first order hyperbolic systems

    Hitoshi Ishii, Yoshinori Sagisaka, Masayoshi Tsutsumi

    Publ. Res. Inst. Math. Sci.   11 ( 2 ) 403 - 415  1975年

  • On some perturbation of the Navier-Stokes equations in Lp spaces

    Hitoshi Ishii

    Funkcial. Ekvac.   18 ( 1 ) 73 - 83  1975年

  • On some Fourier multipliers and partial differential equations.

    Hitoshi Ishii

    Math. Japon.   19 ( 3 ) 139 - 163  1974年

  • On some Fourier multipliers and partial differential equations

    Hitoshi Ishii

    Math. Japon.   19 ( 3 ) 139 - 163  1974年

  • Estimates from Wp, α to Wq, β for the solutions of the Petrovskii well posed Cauchy problems.

    Hitoshi Ishii

    Proc. Japan Acad.   49   705 - 710  1973年

  • Estimates from Wp, α to Wq, β for the solutions of the Petrovskii well posed Cauchy problems

    Hitoshi Ishii

    Proc. Japan Acad.   49   705 - 710  1973年

▼全件表示

書籍等出版物

  • プリンストン数学大全

    石井 仁司( 担当: 共訳)

    朝倉書店  2015年11月

  • Hamilton-Jacobi equations: approximations, numerical analysis and applications

    石井 仁司( 担当: 共著,  担当範囲: pp. 111–249)

    Springer, Heidelberg; Fondazione C.I.M.E.  2013年

  • 応用解析ハンドブック

    石井 仁司( 担当: 共著,  担当範囲: pp. 311-374)

    シュプリンガー・ジャパン  2010年02月

  • Recent progress on reaction-diffusion systems and viscosity solutions

    石井 仁司( 担当: 共編者(共編著者))

    World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ  2009年

受賞

  • 日本数学会賞 小平邦彦賞

    2019年09月   日本数学会   完全非線形偏微分方程式の粘性解理論  

    受賞者: 石井 仁司

  • 大隈記念学術褒賞

    2017年11月   早稲田大学   非線形偏微分方程式の粘性解理論の創始とその応用  

    受賞者: 石井 仁司

  • フェロー

    2012年01月   米国数学会  

    受賞者: 石井 仁司

  • Highly cited researcher

    2002年   Thompson ISI  

    受賞者: 石井 仁司

  • 日本数学会賞 秋季賞

    1994年09月   日本数学会  

    受賞者: 石井 仁司

共同研究・競争的資金等の研究課題

  • 地球温暖化問題における割引率と国際環境協定に関する研究

    日本学術振興会  科学研究費助成事業(基盤研究(B))

    研究期間:

    2018年04月
    -
    2021年03月
     

    赤尾健一

  • 粘性解の理論と応用の新展開

    日本学術振興会  科学研究費助成事業(基盤研究(B))

    研究期間:

    2016年04月
    -
    2020年03月
     

    石井仁司

  • 粘性解理論の深化と応用

    日本学術振興会  科学研究費助成事業(基盤研究(A))

    研究期間:

    2011年04月
    -
    2016年03月
     

    石井仁司

  • 微分方程式の粘性解理論とその応用の研究

    日本学術振興会  科学研究費助成事業(基盤研究(A))

    研究期間:

    2006年04月
    -
    2010年03月
     

    石井仁司

  • 粘性解の理論と応用の研究

    日本学術振興会  科学研究費助成事業(基盤研究(B))

    研究期間:

    2003年04月
    -
    2006年03月
     

    石井 仁司

  • 粘性解と変分問題

    日本学術振興会  科学研究費助成事業(萌芽研究)

    研究期間:

    2002年04月
    -
    2005年03月
     

    石井仁司

  • 微分方程式の粘性解とその応用の研究

    日本学術振興会  科学研究費助成事業(基盤研究(B))

    研究期間:

    2000年04月
    -
    2003年03月
     

    石井 仁司

  • 粘性解の理論と応用

    日本学術振興会  科学研究費助成事業(基盤研究(B))

    研究期間:

    1997年04月
    -
    2000年03月
     

    石井 仁司

  • 超曲面の曲率流における待ち時間の研究

    日本学術振興会  科学研究費助成事業(萌芽的研究)

    研究期間:

    1997年04月
    -
    1999年04月
     

    石井 仁司

  • Hamilton-Jacobi 方程式に対する特異摂動問題の研究

    日本学術振興会  科学研究費助成事業(基盤研究(C))

    研究期間:

    1996年04月
    -
    1997年03月
     

    石井 仁司

  • 非線形偏微分方程式の粘性解とその応用の研究

    日本学術振興会  科学研究費助成事業(基盤研究(C))

    研究期間:

    1995年04月
    -
    1996年03月
     

    石井 仁司

  • 粘性解とその応用に関する共同研究

    日本学術振興会  科学研究費助成事業(基盤研究(C))

    研究期間:

    1995年04月
    -
    1996年03月
     

    石井 仁司

  • 非線形楕円型及び放物型偏微分方程式の研究 研究課題

    日本学術振興会  科学研究費助成事業(基盤研究(C))

    研究期間:

    1992年04月
    -
    1993年03月
     

    石井 仁司

  • 非線形退化楕円型偏微分方程式の研究

    日本学術振興会  科学研究費助成事業(基盤研究(C))

    研究期間:

    1990年04月
    -
    1992年03月
     

    石井 仁司

  • ハミルトン・ヤコビ方程式の研究

    日本学術振興会  科学研究費助成事業(奨励研究(A))

    研究期間:

    1984年04月
    -
    1985年03月
     

    石井 仁司

  • 非線形偏微分方程式の解の周期性・概周期性に関する研究

    日本学術振興会  科学研究費助成事業(奨励研究(A))

    研究期間:

    1980年04月
    -
    1981年03月
     

    石井 仁司

  • Study on periodicity and almost periodicity of solutions of nonlinear partial differential equations

  • A study of Hamilton-Jacobi equations

  • Some investigations on Riemann surfaces

  • On spectrum of Riemannian manifold

  • A study on nonlinear degenerate elliptic partial differential equations

  • On the deformations of cyclic Galois coverings of algebraic curves

  • Initial value problem for partial differential equations

  • Comprehensive Researches of Differential Equations

  • Study of irregular singularities of differential equations

  • Deformation theory of group schemes and Construction of extensions

  • Synthetic study on differential equations

  • Joint Study on Viscosity Solutions and Their Applications

  • Study on singular perturbation problem for Hamilton-Jacobi equation

  • Applications to the optimal control and differential game via the viscosity solution theory

  • Nonlinear Evolution Equations and Elliptic Equations

  • Theory and applications of viscosity solutions

  • Free boundary problems in potential theory

  • Phase transition and free boundary problem

  • Study of Solutions to Partial Differential Equations, Variational problems and Inverse. Problems

  • Changes of configuration in free boundary problems

  • Study on Optimal Controls and Differential Games via the Viscosity Solution Theory

  • Study on Nonlinear Evolution Equations and Nonlinear Elliptic Equations

  • Research on viscosity solutions of differential equations and their applications

  • Bellman equations of risk-sensitive stochastic and their applications

  • Nonlinear elliptic and parabolic PDEs, theories and applications

  • Viscosity solutions and variational problems

  • Research on the theory of viscosity solutions and its applications

  • Synthetic study for nonlinear evolution equations and eonlinear elliptic equations

  • On the study of the theory of viscosity solutions and its new developments

  • Expected utility maximiaation problems and stochastic control

  • Study on asymptotic solutions of Hamilton-Jacobi equations based on the theory of viscosity solutions

  • Structures created and preserved in nonlinear diffusion field

  • Development of the methods of stochastic control and filtering in mathematical finance

  • Viscosity solution theory for fully nonlinear equations and its applications

  • Development of Analysis on Evolving Pattern for Complicated Phenomena

  • Synthetic study of nonlinear evolution equation and its related topics

  • Fundamental theory for viscosity solutions of fully nonlinear equations and its applications

  • Advanced Analysis on Evolving Patterns in Nonlinear Phenomena Driven by Singular Structure

▼全件表示

講演・口頭発表等

  • 非線形偏微分方程式の粘性解理論の発展

    石井 仁司  [招待有り]

    第1回日本数学会賞小平邦彦賞 授賞式および受賞講演会  

    発表年月: 2019年09月

  • The vanishing discount problem for weakly coupled systems of Hamilton-Jacobi equations

    石井 仁司  [招待有り]

    4th Swiss-Japanese PDE seminar  

    発表年月: 2019年09月

  • The vanishing discount problem for weakly coupled systems of Hamilton-Jacobi equations

    石井 仁司  [招待有り]

    New trends in Hamilton-Jacobi: PDE, Control, Dynamical Systems and Geometry  

    発表年月: 2019年07月

  • The Dirichlet problem for truncated Laplacians

    石井 仁司  [招待有り]

    The Peoples' Friendship University of Russia,  

    発表年月: 2019年04月

  • Asymptotic problems for the Langevin equation with variable friction

    石井 仁司  [招待有り]

    The Peoples' Friendship University of Russia,  

    発表年月: 2019年04月

  • ハミルトン・ヤコビ方程式に対する 割引消去問題

    石井 仁司  [招待有り]

    応用解析研究会  

    発表年月: 2019年04月

  • The vanishing discount problem for Hamilton-Jacobi equations in Euclidean n space

    石井 仁司  [招待有り]

    PDEs at Valparaiso, a conference in honor of Patricio Felmer's 60th birthday  

    発表年月: 2018年12月

  • The vanishing discount problem for Hamilton-Jacobi equations in Euclidean n space

    石井 仁司  [招待有り]

    From Optimal Control to Maximum Principle  

    発表年月: 2018年09月

  • Two asymptotic problems concerning the Langevin equation with variable friction

    石井 仁司  [招待有り]

    The tenth meeting on Probability and PDE, Tsuda University,  

    発表年月: 2018年08月

  • The Langevin equation with variable friction and Smoluchowski-Kramers approximation

    石井 仁司  [招待有り]

    12th AIMS Conference NTU  

    発表年月: 2018年07月

  • The vanishing discount problem for fully nonlinear degenerate elliptic PDEs

    石井 仁司

    12th AIMS Conference NTU  

    発表年月: 2018年07月

  • The vanishing discount problem for fully nonlinear degenerate elliptic PDEs

    石井 仁司  [招待有り]

    Nanjing University  

    発表年月: 2018年06月

  • The vanishing discount problem for fully nonlinear degenerate elliptic PDEs

    石井 仁司  [招待有り]

    Seminari di Analisi Matematica, Universita di Bologna  

    発表年月: 2018年05月

  • Asymptotic problems for the Langevin equation with variable friction

    石井 仁司  [招待有り]

    Seminario di Analisi Matematica, Sapienza Universita di Roma  

    発表年月: 2018年05月

  • Asymptotic problems for Hamilton-Jacobi equations and weak KAM theory

    石井 仁司  [招待有り]

    Wolfgang Wasow Lectures, University of Wisconsin-Madison  

    発表年月: 2018年04月

  • The Langevin equation with variable friction and Smoluchowski-Kramers approximation

    石井 仁司  [招待有り]

    81st Midwest PDE Seminar  

    発表年月: 2018年04月

  • The Langevin equation with variable friction and Smoluchowski-Kramers approximation

    石井 仁司  [招待有り]

    Royal Institue of Technology, Sweden  

    発表年月: 2017年09月

  • The Langevin equation and Smoluchowski-Kramers approximation with variable friction

    石井 仁司  [招待有り]

    Seminar at Fudan University  

    発表年月: 2017年08月

  • The Langevin equation and Smoluchowski-Kramers approximation with variable friction

    石井 仁司  [招待有り]

    Viscosity solution approach to asymptotic problems in front propagation, dynamical system and related topics, RIMS  

    発表年月: 2017年07月

  • The vanishing discount problem for fully nonlinear degenerate elliptic PDEs

    石井 仁司  [招待有り]

    Mostly Maximum Principle at BIRS , Canada  

    発表年月: 2017年03月

  • The vanishing discount problem for fully nonlinear degenerate elliptic PDEs

    石井 仁司  [招待有り]

    Beyond Hamilton-Jacobi, Last call to Bordeaux  

    発表年月: 2017年01月

  • 粘性解と漸近問題

    石井 仁司  [招待有り]

    日本数学会70周年記念講演(日本数学会秋季総合分科会)  

    発表年月: 2016年09月

  • The vanishing discount problem and generalized Mather measures

    石井 仁司  [招待有り]

    AMCS Seminar at KAUST  

    発表年月: 2016年08月

  • A boundary value problem of the Neumann type for elliptic equations on the positive orthant

    石井 仁司  [招待有り]

    Mostly Maximum Principle at Agropoli, Italy  

    発表年月: 2015年08月

  • Metastability for parabolic equations with drift

    石井 仁司  [招待有り]

    Nonlinear Elliptic PDEs at the End of the World, Chile  

    発表年月: 2015年05月

  • Metastability for parabolic equations with drift

    石井 仁司  [招待有り]

    Beyond Hamilton-Jacobi in Avignon, Palais des Papes,  

    発表年月: 2014年04月

  • Large time behavior of solutions of Hamilton-Jacobi equations with Neumann type BC

    石井 仁司  [招待有り]

    Dynamical Optimization in PDE and Geometry, Universite Bordeaux 1  

    発表年月: 2011年12月

  • Small stochastic perturbations of Hamiltonian flows: a PDE approach

    石井 仁司  [招待有り]

    DFDE 2011, The Peoples' Friendship University of Russia,  

    発表年月: 2011年08月

  • Stochastic Perturbations to Hamiltonian Flows: a PDE approach

    石井 仁司  [招待有り]

    14th Riviere-Fabes symposium, University of Minessotta  

    発表年月: 2011年04月

  • Long-time behavior of solutions of Hamilton-Jacobi equations with Neumann type boundary conditions

    石井 仁司  [招待有り]

    14th Riviere-Fabes symposium, University of Minessotta  

    発表年月: 2011年04月

  • 格子転位モデルに現れる 非局所ハミルトン・ヤコビ方程式について

    石井 仁司

    日本数学会秋季総合分科会(函数方程式分科会) 大阪大学  

    発表年月: 2009年09月

  • Nonlocal Hamilton-Jacobi Equations Arising in Dislocation Dynamics

    石井 仁司  [招待有り]

    Nonlinear Analysis Workshop at ANU, Australia  

    発表年月: 2009年03月

  • Nonlinear singular integral equations and approximation of p-Laplace equations

    石井 仁司  [招待有り]

    2nd International Conference on Reaction-Di usion Systems & Viscosity Solutions at Providence University, Taiwan  

    発表年月: 2008年07月

  • Asymptotic solutions of Hamilton–Jacobi equations for large time and related topics

    石井 仁司  [招待有り]

    応用数理国際会議  

    発表年月: 2007年07月

  • Asymptotic solutions for large time of Hamilton-Jacobi equations

    石井 仁司  [招待有り]

    国際数学者会議  

    発表年月: 2006年08月

▼全件表示

特定課題研究

  • 完全非線形楕円型方程式の主固有値に関する研究

    2005年  

     概要を見る

    P.-L. Lions による論文,Bifurcation and optimal stochastic control, Nonlinear Analysis, Vol. 7, 1983年,pp. 177-207,において得られた非線形2階楕円型方程式に対する主固有値問題に関する結果を考察し,この論文における主要な証明の方法である確率制御の方法を通常の偏微分方程式理論の解析的な方法に置き換える可能性を第一に探った.さらに,その結果を確率制御の方法では扱えないアイザックス型の非線形2階楕円型方程式に応用することを研究した.このために,一般の非線形2階楕円型方程式に対する強最大値原理の確立,H. IshiiとP.-L. Lions の論文,Viscosity solutions of fully nonlinear second-order elliptic differential equations, J. Differential Equations, 83巻,1990年,pp. 26-78,で得られている解のヘルダー連続性の評価の精密化,方程式の未知関数への単調依存性がない場合の連続な解の存在定理の確立を行った.これらの結果を応用して,半固有値の存在を証明し,その性質を研究した.特に,半固有値に対する固有関数の存在の確立,半固有値と正値解の一意性との関係の確立,解の一意性とそれを保障する半固有値の定義とその存在の確立などを行った.

  • 粘性解とその応用

    2001年  

     概要を見る

    退化楕円型編微分方程式に対する状態拘束問題に対する粘性解の存在、一意性、解の連続性について研究し、存在と一意性のための十分条件を与えた。さらに、解の連続度についての一般的評価を与えた。一方で、確率制御に関して、状態拘束問題を考え、この問題の値関数が対応するハミルトン・ヤコビ・ベルマン方程式に対する状態拘束問題の解になっていることを証明した。この結果については、第35回中華民国数学会年会での招待講演において発表した。ガウス曲率流の一般化として、石の磨耗のモデルを考察して、石が必ずしも凸でない場合に対応する曲率流を研究した。まず、石の境界面がグラフとして記述される場合に、対応する編微分方程式の粘性解の存在と比較について比較的一般的な結果を得た。その後、レベル・セットアプローチによる石がコンパクトな場合のこの曲率流を考察し、難題であったレベル・セット法における編微分方程式の粘性解の比較定理の証明に成功し、それに基づき粘性解の存在を証明した。ボルツマン方程式の線形化方程式の漸近問題を考慮に入れ、1階の編微分方程式系(無限連立系)の漸近問題を研究した。この問題は、ランダム発展過程の制御問題と関連する。この問題について、一般的な粘性解の存在定理を単調関数族の考えを用いる斬新な方法で証明し、さらに、初期遷移層の発現する場合も込めて、漸近問題の収束、極限方程式の同定を行い、これに成功した。ペロン・フロベニウスの定理、リース・シャウダーの定理に基づく方法で、極限方程式の導出が行われた。以上が研究成果の概要である。

 

委員歴

  • 2011年
    -
    継続中

    Bulletin of Mathematical Sciences  編集委員

  • 2011年
    -
    継続中

    Journal de Mathematiques Pures et Appliquees  編集委員

  • 2011年
    -
    継続中

    Bulletin of Mathematical Sciences  Editor

  • 2011年
    -
    継続中

    Journal de Mathematiques Pures et Appliquees  Editor

  • 2008年
    -
    継続中

    Advances in Calculus of Variations  編集委員

  • 2008年
    -
    継続中

    Advances in Calculus of Variations  Editor

  • 2000年
    -
    継続中

    Nonlinear Differential Equations and Applications  編集委員

  • 2000年
    -
    継続中

    Nonlinear Differential Equations and Applications  Editor

  • 2018年07月
    -
    2019年07月

    New trends in Hamilton-Jacobi: PDE, Control, Dynamical Systems and Geometry  Scientific Committee.

  • 2016年06月
    -
    2017年08月

    Eighth International Conference on Differential and Functional Differential Equations  Program Committee

  • 2008年10月
    -
    2014年09月

    日本学術会議  連携会員

  • 1996年07月
    -
    2000年06月

    日本数学会  国際交流委員会

▼全件表示