WATANABE, Keiichi

写真a

Affiliation

Faculty of Science and Engineering, Global Center for Science and Engineering

Job title

Assistant Professor(without tenure)

Homepage URL

https://sites.google.com/site/wasedakwatanabe/

Concurrent Post 【 display / non-display

  • Faculty of Political Science and Economics   School of Political Science and Economics

Education 【 display / non-display

  • 2017.09
    -
    2020.03

    Waseda University   Graduate School of Fundamental Science and Engineering   Department of Pure and Applied Mathematics  

    Doctoral course

  • 2016.04
    -
    2017.09

    Waseda University   Graduate School of Fundamental Science and Engineering   Department of Pure and Applied Mathematics  

    Master course

  • 2013.04
    -
    2016.03

    Waseda University   School of Fundamental Science and Engineering   Department of Mathematics  

  • 2012.04
    -
    2013.03

    Waseda University   School of Fundamental Science and Engineering  

Degree 【 display / non-display

  • 2020.03   Waseda University   Ph. D.

Research Experience 【 display / non-display

  • 2020.04
    -
    Now

    Waseda University   Global Center for Science and Engineering   Assistant Professor

  • 2019.04
    -
    2020.03

    Japan Society for the Promotion of Science   Research Fellowship for Young Scientists (DC2)

Professional Memberships 【 display / non-display

  • 2017.10
    -
    Now

    The Mathematical Society of Japan

 

Research Areas 【 display / non-display

  • Mathematical analysis   Partial differential equations

Research Interests 【 display / non-display

  • Navier-Stokes equations

  • Partial differential equations

Papers 【 display / non-display

  • Stabilization of the chemotaxis–Navier–Stokes equations: Maximal regularity approach

    Keiichi Watanabe

    Journal of Mathematical Analysis and Applications   504 ( 2 ) 125422 - 125422  2021.12  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

  • Global Solvability of Compressible–Incompressible Two-Phase Flows with Phase Transitions in Bounded Domains

    Keiichi Watanabe

    Mathematics   9 ( 3 ) 258 - 258  2021.01  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

  • Strong solutions to compressible–incompressible two-phase flows with phase transitions

    Keiichi Watanabe

    Nonlinear Analysis: Real World Applications   54   103101 - 103101  2020.08  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

  • The Navier–Stokes equations in exterior Lipschitz domains: L -theory

    Patrick Tolksdorf, Keiichi Watanabe

    Journal of Differential Equations    2020.04  [Refereed]

    DOI

  • Compressible–Incompressible Two-Phase Flows with Phase Transition: Model Problem

    Keiichi Watanabe

    Journal of Mathematical Fluid Mechanics   20 ( 3 ) 969 - 1011  2018.09  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

Research Projects 【 display / non-display

  • 接触角を生成する流体方程式の適切性

    若手研究

    Project Year :

    2021.04
    -
    2026.03
     

    渡邊 圭市

  • DAAD-早稲田大学パートナーシッププロジェクト

    Mathematical theory of the moving contact line problem

    Project Year :

    2021.04
    -
    2023.03
     

    Keiichi Watanabe, Jürgen Saal

    Authorship: Principal investigator

  • Navier-Stokes equations in non-smooth domains

    Project Year :

    2021.06
    -
    2022.03
     

    Keiichi Watanabe

    Authorship: Principal investigator

  • 接触角を生成する非圧縮性粘性流体の数学解析

    研究活動スタート支援

    Project Year :

    2020.09
    -
    2022.03
     

    渡邊圭市

    Authorship: Principal investigator

  • Mathematical analysis of the Navier-Stokes equations with moving contact angles

    Project Year :

    2020.06
    -
    2021.03
     

    Keiichi Watanabe

    Authorship: Principal investigator

display all >>

Presentations 【 display / non-display

display all >>

Specific Research 【 display / non-display

  • 接触角を生成するナビエ・ストークス方程式の数学解析

    2020  

     View Summary

    接触角を生成するナビエ・ストークス方程式の自由境界問題の時間局所適切性を示した.この問題は接触角付近に特異性が生じることが知られており,この特異性を除去するためにこれまで様々な数理モデルが提唱されてきた.本研究では,Wilke (2020) と同様に,柱状領域において流体が部分的に占められている状況において,接触角が90°に固定されている場合を考察し,強解を最大Lp-Lq正則性のクラスで得た.また,関連する研究として,ナビエ・ストークス方程式の自由境界問題の定常解の安定性に関する結果も得た.これらの結果は単著論文としてまとめ,現在査読付き国際学術誌に投稿中である.

 

Syllabus 【 display / non-display

display all >>

Teaching Experience 【 display / non-display

  • Ordinary Differential Equations (2)

    Waseda University  

  • Foundations of Analysis 1

    Waseda University  

  • Advanced Analysis

    Waseda University  

  • Survey of Modern Mathematical Sciences B

    Waseda University  

  • Calculus C (1)

    Waseda University  

display all >>

 

Academic Activities 【 display / non-display

  • Reviewer of Mathematical Reviews

    Peer review

    American Mathematical Society  

    2021.01
    -
    Now