UEDA, Takuya

写真a

Affiliation

Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering

Job title

Professor(without tenure)

Research Institute 【 display / non-display

  • 2020
    -
    2022

    理工学術院総合研究所   兼任研究員

Education 【 display / non-display

  • 1981.04
    -
    1984.03

    The University of Tokyo  

  •  
    -
    1984

    The University of Tokyo   Graduate School, Division of Agricultural Science  

  • 1979.04
    -
    1981.03

    The University of Tokyo  

  • 1977.04
    -
    1979.03

    The University of Tokyo  

  •  
    -
    1979

    The University of Tokyo   Faculty of Agriculture  

display all >>

Degree 【 display / non-display

  • (BLANK)

  • (BLANK)

Research Experience 【 display / non-display

  • 2019.04
    -
    Now

    Waseda University   Graduate School of Science and Engineering   Department of Integrative Bioscience and Biomedical Engineering

  • 2015.04
    -
    2019.03

    The University of Tokyo

  • 2004.04
    -
    2016.03

    The University of Tokyo   Graduate School of Frontier Sciences, Department of Medical Genome Sciences

  • 2011.04
    -
    2013.03

    The University of Tokyo   Graduate School of Frontier Sciences

  • 1999.04
    -
    2004.03

    The University of Tokyo   Graduate School of Frontier Sciences, Department of Integrated Biosciences

display all >>

Professional Memberships 【 display / non-display

  •  
     
     

    THE BIOPHYSICAL SOCIETY OF JAPAN

  •  
     
     

    The RNA Society of Japan

  •  
     
     

    無細胞生命科学研究会

  •  
     
     

    農芸化学会

  •  
     
     

    生化学会

display all >>

 

Research Areas 【 display / non-display

  • Structural biochemistry

  • Molecular biology

  • Chemistry and chemical methodology of biomolecules

  • Biophysics

  • Functional biochemistry

display all >>

Research Interests 【 display / non-display

  • リボソーム

  • 生体外蛋白質合成系

  • tRNA

  • シャペロン

  • フォールディング

display all >>

Papers 【 display / non-display

  • Interleukin-6 sensitizes TNF-α and TRAIL/Apo2L dependent cell death through upregulation of death receptors in human cancer cells

    Emiko Sano, Akira Kazaana, Hisashi Tadakuma, Toshiaki Takei, Sodai Yoshimura, Yuya Hanashima, Yoshinari Ozawa, Atsuo Yoshino, Yutaka Suzuki, Takuya Ueda

    Biochimica et Biophysica Acta - Molecular Cell Research   1868 ( 7 )  2021.06

     View Summary

    Interleukin-6 (IL-6) enhanced TNF-α and TRAIL/Apo2L induced cell death in various human cancer cells derived from malignant glioma, melanoma, breast cancer and leukemia, although the effect was not detected with IL-6 alone. The effects of IL-6 using SKBR3 cells were associated with the generation of apoptotic cells as analyzed by fluorescence microscopy and flow cytometry. IL-6 activated p53 and upregulated TRAIL death receptors (DR-4 and DR-5) and stimulated the TNF-α and TRAIL dependent extrinsic apoptotic pathway without activation of the p53 mediated intrinsic apoptotic pathway. TNF-α and TRAIL induced cleavage of caspase-8 and caspase-3 was more enhanced by IL-6, although these caspases were not cleaved by IL-6 alone. The dead cell generation elicited by the combination with IL-6 was blocked by anti-human TRAIL R2/TNFRSF10B Fc chimera antibody which can neutralize the DR-5 mediated death signal. These findings indicate that IL-6 could contribute to the enhancement of TNF-α or TRAIL induced apoptosis through p53 dependent upregulation of DR-4 and DR-5. The data suggest that a favorable therapeutic interaction could occur between TNF-α or TRAIL and IL-6, and provide an experimental basis for rational clinical treatments in various cancers.

    DOI PubMed

  • Force measurements show that uL4 and uL24 mechanically stabilize a fragment of 23S rRNA essential for ribosome assembly

    Laurent Geffroy, Thierry Bizebard, Ryo Aoyama, Takuya Ueda, Ulrich Bockelmann

    RNA   25 ( 4 ) 472 - 480  2021.04  [Refereed]

     View Summary

    In vitro reconstitution studies have shown that ribosome assembly is highly cooperative and starts with the binding of a few ribosomal (r-) proteins to rRNA. It is unknown how these early binders act. Focusing on the initial stage of the assembly of the large subunit of the Escherichia coli ribosome, we prepared a 79-nucleotide-long region of 23S rRNA encompassing the binding sites of the early binders uL4 and uL24. Force signals were measured in a DNA/RNA dumbbell configuration with a double optical tweezers setup. The rRNA fragment was stretched until unfolded, in the absence or in the presence of the r-proteins (either uL4, uL24, or both). We show that the r-proteins uL4 and uL24 individually stabilize the rRNA fragment, both acting as molecular clamps. Interestingly, this mechanical stabilization is enhanced when both proteins are bound simultaneously. Independently, we observe a cooperative binding of uL4 and uL24 to the rRNA fragment. These two aspects of r-proteins binding both contribute to the efficient stabilization of the 3D structure of the rRNA fragment under investigation. We finally consider implications of our results for large ribosomal subunit assembly.

    DOI PubMed

  • Snapshots of native pre-50S ribosomes reveal a biogenesis factor network and evolutionary specialization

    Rainer Nikolay, Tarek Hilal, Sabine Schmidt, Bo Qin, David Schwefel, Carlos H. Vieira-Vieira, Thorsten Mielke, Jörg Bürger, Justus Loerke, Kazuaki Amikura, Timo Flügel, Takuya Ueda, Matthias Selbach, Elke Deuerling, Christian M.T. Spahn

    Molecular Cell   81 ( 6 ) 1200 - 1215.e9  2021.03

     View Summary

    Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.

    DOI PubMed

  • Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA

    Muhoon Lee, Noriko Matsunaga, Shiori Akabane, Ippei Yasuda, Takuya Ueda, Nono Takeuchi-Tomita

    Nucleic Acids Research   49 ( 1 ) 371 - 382  2021.01

     View Summary

    Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.

    DOI PubMed

  • Reconstituted cell-free protein synthesis using in vitro transcribed tRNAs

    Keita Hibi, Kazuaki Amikura, Naoki Sugiura, Keiko Masuda, Satoshi Ohno, Takashi Yokogawa, Takuya Ueda, Yoshihiro Shimizu

    Communications Biology   3 ( 1 ) 350 - 350  2020.12  [Refereed]  [International journal]

     View Summary

    Entire reconstitution of tRNAs for active protein production in a cell-free system brings flexibility into the genetic code engineering. It can also contribute to the field of cell-free synthetic biology, which aims to construct self-replicable artificial cells. Herein, we developed a system equipped only with in vitro transcribed tRNA (iVTtRNA) based on a reconstituted cell-free protein synthesis (PURE) system. The developed system, consisting of 21 iVTtRNAs without nucleotide modifications, is able to synthesize active proteins according to the redesigned genetic code. Manipulation of iVTtRNA composition in the system enabled genetic code rewriting. Introduction of modified nucleotides into specific iVTtRNAs demonstrated to be effective for both protein yield and decoding fidelity, where the production yield of DHFR reached about 40% of the reaction with native tRNA at 30°C. The developed system will prove useful for studying decoding processes, and may be employed in genetic code and protein engineering applications.

    DOI PubMed

display all >>

Books and Other Publications 【 display / non-display

  • Molecular mechanism of the genetic code variations found in Candida species and its implications in evolution of the genetic code

    The translational apparatns Structure, Function, Regulation, Evolution  1993

Misc 【 display / non-display

  • タンパク質膜挿入反応に関与する糖脂質酵素MPlaseは生育に必須である

    沢里 克宏, 佐藤 諒, 西川 華子, 飯村 直樹, 藤川 紘樹, 山口 敏幸, 車 ゆうてつ, 田村 康, 遠藤 斗志也, 上田 卓也, 島本 啓子, 西山 賢一

    生命科学系学会合同年次大会   2017年度   [4AT26 - 09(3P  2017.12

  • タンパク質の溶解度と配列・構造特徴との網羅的相関解析

    中村周吾, 丹羽達也, 清水謙多郎, 田口英樹, 上田卓也

    日本蛋白質科学会年会プログラム・要旨集   16th   28  2016.05

    J-GLOBAL

  • タンパク質の溶解度と配列・構造特徴の相関解析および溶解度予測ツールの開発

    中村周吾, 丹羽達也, 田口英樹, 上田卓也

    日本蛋白質科学会年会プログラム・要旨集   15th   143  2015.05

    J-GLOBAL

  • mRNA配列に制御された翻訳終結反応の解析

    高橋俊太郎, 上田卓也, 岡畑惠雄

    日本RNA学会年会要旨集   14th   88  2012.07

    J-GLOBAL

  • 翻訳速度と翻訳異常終結の関連性評価

    廣瀬敦, 高橋俊太郎, 上田卓也, 岡畑惠雄

    日本RNA学会年会要旨集   14th   201  2012.07

    J-GLOBAL

display all >>

Industrial Property Rights 【 display / non-display

display all >>

Awards 【 display / non-display

  • JB論文賞

    2012   日本生化学会  

  • JB論文賞

    1995   日本生化学会  

Research Projects 【 display / non-display

  • 進化工学

  • 蛋白質合成系の研究

  • Study on the Protein synthesis

Specific Research 【 display / non-display

  • 人工細胞を指向したバイオシステムの無細胞合成系の開発

    2019  

     View Summary

    人工細胞の構築は合成生物学の目標の一つであり、再構築型無細胞タンパク質合成系PURE systemはその基幹システムとなることが期待されている。しかし、PURE systemを人工細胞へと発展させるためには、PURE systemが増殖し、またエネルギーを生産するシステムへと改良する必要がある。そのために、DNAからのリボソームの合成システム、転写系合成したtRNAによるPURE systemの構築、エネルギー生産細胞の合成、の三つのプロジェクトを推進し以下の成果を得た。大腸菌の小サブユニットについては、すでに個別精製したリボソームタンパク質とrRNAからの再構成に成功している。本課題では、リボソームタンパク質をDNAからPURE systemにより転写翻訳で合成し、rRNA存在下で30Sサブユニットとしてアセンブルさせ、その翻訳活性を解析した。転写合成するrRNAのanti-SD領域を人工配列に置換し、新規に再構成された30SとPURE system内の天然の30Sを区別した。解析の結果、新規に再構成した30Sサブユニットは翻訳活性を有することが示された。この結果は、Communications Biologyの投稿し受理された。また、50Sサブユニットについては、個別精製したリボソームタンパク質と23SrRNAと5Sからの再構成を行った。ショ糖密度勾配による超遠心による解析から再構成されていることが示され、また50Sサブユニットが活性は低いものの翻訳活性を有していることが示された。現在は、DNAから50Sサブユニットの合成を試みている。大腸菌の開始tRNAと20種類の伸長tRNAを試験管内転写系によって合成した。これらのtRNAは、天然のtRNAよりも活性は低いものの、翻訳活性を有していることが示された。この結果は、Nature Communicationに投稿し、現在formal peer review中である。転写rRNAに酵素的に修飾塩基を導入することで翻訳活性を向上させることに成功した。また個別の転写tRNAについてコドンの誤読度の評価を行い、高い忠実性を有していることが示された。バクテリオロドプシンとATP合成酵素をPUREで発現させたエネルギー(ATP)生産人工細胞の構築については、2019年3月にNature Communicationに発表している。このシステムはバクテリオロドプシンとATP合成酵素のF0部分のみをPURE systemでDNAから合成しリポソーム上に挿入したものであり、ATP合成酵素のF1部分はPURE systemでの発現量が不十分であり、天然のものを用いていた。本年度は、PURE systemの翻訳活性をさらに改善し、ATP合成酵素のF1部分もDNAからの合成が可能であることが示唆された。

  • 遺伝暗号の起源の解明の研究

    2019  

     View Summary

    遺伝暗号表の成立過程の解明は、生命の起源を解き明かすことである。本課題では、清水幹夫によって提唱されたtRNAのアンチコドンとディスクリミネーター塩基がC4Nコンプレックスを形成し、この複合体上のポケットでアミノ酸が認識・選択されることで遺伝暗号が生まれたとするC4N仮説を実証することを目的としている。いくつかのアミノ酸と対応するアンチコドンの分子模型を作製し、その相互作用を検討したところ、相互作用は可能であるが、水溶液中では、水分子の存在により容易に減弱される弱い相互作用であり、アミノ酸とRNAのみでは立体的な相互作用が困難であることが明らかとなった。この点については、水分子を排除し安定な環境を与える足場の分子を想定することで克服できると考えた。さまざまの分子を検討したが、以下の三点からリン酸のポリマー(ポリリン酸)が足場分子であるという作業仮説を持つに至った。①アミノ酸やヌクレオチドの脱水重合反応を促進しうる強い脱水分子である。②アンチコドンのリン酸部分に対して強く反発すること、また③アミノ酸のアミノ基を外側に固定すること、でアンチコドンの塩基部分とアミノ酸の相互作用を安定化しうる。さらに、現在のタンパク質合成系では、アミノ酸はATPのトリ(ポリ)リン酸部分の加水分解と共役してアミノ酸がAMPと共有結合を形成することで活性化されることを考えると、原始タンパク質合成系では、ポリリン酸は単なる安定化するのではなく触媒的に機能していた可能性がある。以上の考えに基づいて、ポリリン酸存在下での核酸によるアミノ酸の選択と重合からなる原始タンパク質合成系のモデルを構築した。ポリリン酸の生命の起源への関与を実験的に検討するために、現在さまざまな鎖長のポリリン酸を作製もしくは購入し、ポリリン酸による原始タンパク質合成系の実験的再現を進めている。これらのポリリン酸存在下でのアミノ酸の重合反応の最適条件を現在検討している。

 

Syllabus 【 display / non-display

display all >>

Teaching Experience 【 display / non-display

  • 基礎講義Ⅱ

    東京大学  

  • 分子生物学II

    東京大学