YOSHIDA, Satoshi

写真a

Affiliation

Faculty of International Research and Education, School of International Liberal Studies

Job title

Professor

Concurrent Post 【 display / non-display

  • Faculty of Science and Engineering   Graduate School of Advanced Science and Engineering

Research Institute 【 display / non-display

  • 2021
    -
    2022

    リサーチイノベ オープンイノベーション推進セクション   兼任センター員

Education 【 display / non-display

  • 1998
    -
    2003

    The University of Tokyo   Graduate School of Science  

  • 1994
    -
    1998

    The University of Tokyo   Faculty of Science  

Degree 【 display / non-display

  • 東京大学   博士(理学)

Research Experience 【 display / non-display

  • 2020
    -
    Now

    Waseda University   School of International Liberal Studies   Professor

  • 2018
    -
    2020

    Waseda University   School of International Liberal Studies

  • 2014
    -
    2018

    Gunma University   Initiative for Advanced Research

  • 2009
    -
    2014

    ブランダイス大学   生物学部   アシスタントプロフェッサー

  • 2003
    -
    2009

    Harvard University

Professional Memberships 【 display / non-display

  •  
     
     

    THE MOLECULAR BIOLOGY SOCIETY OF JAPAN

  •  
     
     

    酵母遺伝学フォーラム

 

Research Areas 【 display / non-display

  • Genetics   酵母遺伝学

  • Cell biology   細胞周期 代謝 老化

Research Interests 【 display / non-display

  • 酵母遺伝学

  • 細胞生物学

Papers 【 display / non-display

  • Reliable imaging of ATP in living budding and fission yeast

    Masak Takaine, Masaru Ueno, Kenji Kitamura, Hiromi Imamura, Satoshi Yoshida

    Journal of Cell Science   132 ( 8 ) jcs230649 - jcs230649  2019.04  [Refereed]

    DOI PubMed

  • Spindle pole body movement is affected by glucose and ammonium chloride in fission yeast

    Hiroaki Ito, Takeshi Sugawara, Soya Shinkai, Satoshi Mizukawa, Ayaka Kondo, Hisamichi Senda, Kengo Sawai, Koki Ito, Sayaka Suzuki, Masakatsu Takaine, Satoshi Yoshida, Hiromi Imamura, Kenji Kitamura, Toshinori Namba, Shin-ichi Tate, Masaru Ueno

    Biochemical and Biophysical Research Communications   511 ( 4 ) 820 - 825  2019.04  [Refereed]

    DOI PubMed

  • Kynurenine aminotransferase activity of Aro8/Aro9 engage tryptophan degradation by producing kynurenic acid in Saccharomyces cerevisiae

    Kazuto Ohashi, Romanas Chaleckis, Masak Takaine, Craig E. Wheelock, Satoshi Yoshida

    SCIENTIFIC REPORTS   7 ( 1 ) 12180  2017.09  [Refereed]

     View Summary

    Kynurenic acid (KA) is a tryptophan (Trp) metabolite that is synthesised in a branch of kynurenine (KYN) pathway. KYN aminotransferase (KAT) catalyses deamination of KYN, yielding KA. Although KA synthesis is evolutionarily conserved from bacteria to humans, the cellular benefits of synthesising KA are unclear. In this study, we constructed a KAT-null yeast mutant defective in KA synthesis to clarify the cellular function of KA. Amino acid sequence analysis and LC/MS quantification of KA revealed that Aro8 and Aro9 are the major KATs. KA was significantly decreased in the aro8 Delta aro9 Delta double mutant. We found that aro8 Delta aro9 Delta cells did not exhibit obvious defects in growth or oxidative stress response when proper amounts of amino acids are supplied in the media. We further found that aro8 Delta aro9 Delta cells were sensitive to excess Trp. The Trp sensitivity was not rescued by addition of KA, suggesting that Trp sensitivity is not due to the loss of KA. In conclusion, we propose that KAT activity is required for detoxification of Trp by converting it to the less toxic KA.

    DOI PubMed

  • Ypk1 and Ypk2 kinases maintain Rho1 at the plasma membrane by flippase-dependent lipid remodeling after membrane stresses

    Riko Hatakeyama, Keiko Kono, Satoshi Yoshida

    JOURNAL OF CELL SCIENCE   130 ( 6 ) 1169 - 1178  2017.03  [Refereed]

     View Summary

    The plasma membrane (PM) is frequently challenged by mechanical stresses. In budding yeast, TORC2-Ypk1/Ypk2 kinase cascade plays a crucial role in PM stress responses by reorganizing the actin cytoskeleton via Rho1 GTPase. However, the molecular mechanism by which TORC2-Ypk1/Ypk2 regulates Rho1 is not well defined. Here, we found that Ypk1/Ypk2 maintain PM localization of Rho1 under PM stress via spatial reorganization of the lipids including phosphatidylserine. Genetic evidence suggests that this process is mediated by the Lem3-containing lipid flippase. We propose that lipid remodeling mediated by the TORC2-Ypk1/Ypk2-Lem3 axis is a backup mechanism for PM anchoring of Rho1 after PM stress-induced acute degradation of phosphatidylinositol 4,5-bisphosphate [PI(4,5) P-2], which is responsible for Rho1 localization under normal conditions. Since all the signaling molecules studied here are conserved in higher eukaryotes, our findings might represent a general mechanism to cope with PM stress.

    DOI PubMed

  • Zds1/Zds2-PP2A(Cdc55) complex specifies signaling output from Rho1 GTPase

    Erin M. Jonasson, Valentina Rossio, Riko Hatakeyama, Mitsuhiro Abe, Yoshikazu Ohya, Satoshi Yoshida

    JOURNAL OF CELL BIOLOGY   212 ( 1 ) 51 - 61  2016.01  [Refereed]

     View Summary

    Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1-mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2-protein phosphatase 2A(Cdc55) (PP2A(Cdc55)) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2-PP2A(Cdc55) promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1-Mpk1 activity inhibits cortical PP2A(Cdc55), ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2A(Cdc55) specifies Rho1 signaling output and that reciprocal antagonism between Rho1-PP2A(Cdc55) and Rho1-Pkc1 explains how only one signaling pathway is robustly activated at a time.

    DOI PubMed

display all >>

Misc 【 display / non-display

  • Regulation of budding yeast formin Bni1

    S Yoshida, D Pellman

    MOLECULAR BIOLOGY OF THE CELL   15   266A - 266A  2004.11

    Research paper, summary (international conference)  

  • Ras recruits mitotic exit regulator Lte1 to the bud cortex in budding yeast.

    S Yoshida, R Ichihashi, A Toh-e

    YEAST   20   S258 - S258  2003.07

    Research paper, summary (international conference)  

  • Spindle checkpoint control in budding yeast

    A Toh-e, K Asakawa, S Yoshida

    JOURNAL OF MICROBIOLOGY   39 ( 1 ) 1 - 10  2001.03

    Book review, literature introduction, etc.  

Awards 【 display / non-display

  • Fellow

    2019.10   OFSF  

    Winner: Satoshi Yoshida

  • Bast papers award

    2019.09   Genetics Society of Japan  

    Winner: Satoshi Yoshida

  • Presidential award

    2018.09   Yeast Genetics Society of Japan  

    Winner: Satoshi Yoshida

  • New Investigator Award

    2010.07   Massachusetts Life Science Center  

    Winner: 吉田知史

  • Medical Foundation Fellowship

    2007.07   Charles King Trust  

    Winner: 吉田知史

display all >>

Research Projects 【 display / non-display

  • 細胞外小胞生成に必要な遺伝子の網羅的同定とその解析

    Project Year :

    2018
    -
    2022
     

    吉田知史

    Authorship: Principal investigator

  • 環境変化に応答してRho1GTPaseがシグナルアウトプットを変化させる仕組み

    Project Year :

    2016
    -
    2019
     

    吉田知史

    Authorship: Principal investigator

  • RhoのGTPase活性を標的とした抗がん剤開発の合理性を明らかにする

    Project Year :

    2016
    -
     
     

    吉田知史

    Authorship: Principal investigator

Specific Research 【 display / non-display

  • 発がん遺伝子RhoのGTPase活性はなぜ必須なのか?

    2020  

     View Summary

    Rho GTPaseはGTPと結合することによって活性化し何種類もの下流の標的タンパク質を活性化する。しかし細胞内外からの刺激により活性化したRhoは多種類の標的分子を全て均等に活性化するのではなく、刺激(入力シグナル)の種類に応じて特定の標的(出力シグナル)のみを選択的に活性化する。入力シグナルはRhoを活性化すると同時に出力シグナル経路を規定していると予想されるがその分子機構はよくわかっていない。本研究ではGTPを加水分解できないRho1-G19V, Rho1-Q68L変異体を作成し酵母細胞内でその機能を解析し、Rho1-G19V, Rho1-Q68Lは試験管内では下流の標的因子を強く活性化するにもかかわらず細胞内では機能できないことを明らかにした。この発見は主要な発癌遺伝子であるRhoA GTPaseの阻害剤の開発が可能であることを証明するものであり,RhoAのGTPase活性阻害薬の有効性が実証できれば新しい癌治療法へのアプローチとして大きな貢献となることが期待される。

  • Dissecting the roles of ATP homeostasis in cellular senescence

    2019  

     View Summary

    細胞の活性状態と細胞の老化には密接な関連があると予想されているが確定した根拠はない。本研究では細胞内エネルギーをATP濃度を指標とすることで計測し細胞がストレス応答や老化の過程でATP濃度をどのように保持するのか?またATP濃度に異常が生じた際に細胞にどのような不都合が起こるのかを検証した。これまでに我々は生きている個々の細胞内でのATP濃度を定量的に測定する系の開発に成功した (Takaine et al., J Cell Sci. 2019, Ito et al., BBRC. 2019)。この系を発展させ老化を含む様々なコンディションでのATP濃度変化を可視化へと挑戦している。

  • 細胞内エネルギー状態を可視化し、代謝状態と老化および疾患との関連を明らかにする

    2018  

     View Summary

    採択者は2018年に群馬大学生体調節研究所から早稲田大学国際教養学部へと異動した。本特定課題研究によるサポートにより早稲田大学で新しく研究室を立ち上げるのに必須な器具類の購入が可能となった。研究室のセットアップは少しずつではあるが進んでおり2018年度には本研究課題に関連した「細胞内エネルギーATPの可視化」に関する2報の共同研究論文(Ito et al., BBRC. 2019, および Takaine et al., J. Cell Sci. 2019)を出版することができた。さらに本研究課題を発展させた新規プロジェクトの提案「細胞外微粒子に必須な遺伝子群の網羅的同定」が科学技術振興機構のさきがけに採択された。早稲田大学で研究を発展させていくための基盤が徐々に整いつつあると考えている。

 

Syllabus 【 display / non-display

display all >>