2023/06/06 更新

写真a

ムライ サトシ
村井 聡
Scopus 論文情報  
論文数: 70  Citation: 425  h-index: 10

Click to view the Scopus page. The data was downloaded from Scopus API in June 05, 2023, via http://api.elsevier.com and http://www.scopus.com .

所属
教育・総合科学学術院 教育学部
職名
教授
ホームページ

経歴

  • 2019年04月
    -
    継続中

    早稲田大学   教育・総合科学学術院   教授

  • 2018年04月
    -
    2019年03月

    早稲田大学   教育・総合科学学術院   准教授

  • 2014年04月
    -
    2018年03月

    大阪大学   大学院情報科学研究科   准教授

  • 2013年10月
    -
    2014年03月

    山口大学   大学院理工学研究科   准教授

  • 2009年10月
    -
    2013年09月

    山口大学   大学院理工学研究科   講師

委員歴

  • 2018年
    -
    継続中

    Algebraic Combinatorics  Editors-in-Chief

所属学協会

  •  
     
     

    日本数学会

研究分野

  • 応用数学、統計数学 / 代数学 / 数学基礎

研究キーワード

  • トポロジー的組合せ論

  • 可換環論

  • 代数的組合せ論

受賞

  • 日本数学会 建部賢弘賞奨励賞

    2008年08月  

    受賞者: 村井 聡

 

論文

  • A note on the reducedness and Grobner bases of Specht ideals

    Satoshi Murai, Hidefumi Ohsugi, Kohji Yanagawa

    COMMUNICATIONS IN ALGEBRA   50 ( 12 ) 5430 - 5434  2022年12月

     概要を見る

    The Specht ideal of shape lambda, where lambda is a partition, is the ideal generated by all Specht polynomials of shape lambda. Haiman and Woo proved that these ideals are reduced and found their universal Grobner bases. In this short note, we give a short proof for these results.

    DOI

    Scopus

  • A note on the reducedness and Gröbner bases of Specht ideals

    Satoshi Murai, Hidefumi Ohsugi, Kohji Yanagawa

    Communications in Algebra   50 ( 12 ) 5430 - 5434  2022年

     概要を見る

    The Specht ideal of shape λ, where λ is a partition, is the ideal generated by all Specht polynomials of shape λ. Haiman and Woo proved that these ideals are reduced and found their universal Gröbner bases. In this short note, we give a short proof for these results.

    DOI

    Scopus

  • Betti numbers of symmetric shifted ideals

    Jennifer Biermann, Hernán de Alba, Federico Galetto, Satoshi Murai, Uwe Nagel, Augustine O'Keefe, Tim Römer, Alexandra Seceleanu

    Journal of Algebra   560   312 - 342  2020年10月  [査読有り]

    DOI

    Scopus

    12
    被引用数
    (Scopus)
  • Hessenberg varieties and hyperplane arrangements

    Takuro Abe, Tatsuya Horiguchi, Mikiya Masuda, Satoshi Murai, Takashi Sato

    Journal für die reine und angewandte Mathematik (Crelles Journal)   2020 ( 764 ) 241 - 286  2020年07月  [査読有り]

     概要を見る

    <title>Abstract</title>Given a semisimple complex linear algebraic group <inline-formula id="j_crelle-2018-0039_ineq_9999_w2aab3b7e1517b1b6b1aab1c14b1b1Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_1056.png" /><tex-math>{ { G } }</tex-math></alternatives></inline-formula> and a lower ideal <italic>I</italic> in positive roots of <italic>G</italic>, three objects arise:
    the ideal arrangement <inline-formula id="j_crelle-2018-0039_ineq_9998_w2aab3b7e1517b1b6b1aab1c14b1b7Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0652.png" /><tex-math>{\mathcal{A}_{I } }</tex-math></alternatives></inline-formula>, the regular nilpotent Hessenberg variety <inline-formula id="j_crelle-2018-0039_ineq_9997_w2aab3b7e1517b1b6b1aab1c14b1b9Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0711.png" /><tex-math>{\operatorname{Hess}(N,I)}</tex-math></alternatives></inline-formula>, and the regular semisimple Hessenberg variety <inline-formula id="j_crelle-2018-0039_ineq_9996_w2aab3b7e1517b1b6b1aab1c14b1c11Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0713.png" /><tex-math>{\operatorname{Hess}(S,I)}</tex-math></alternatives></inline-formula>.
    We show that
    a certain graded ring derived from the logarithmic derivation module of <inline-formula id="j_crelle-2018-0039_ineq_9995_w2aab3b7e1517b1b6b1aab1c14b1c13Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0652.png" /><tex-math>{\mathcal{A}_{I } }</tex-math></alternatives></inline-formula> is isomorphic to
    <inline-formula id="j_crelle-2018-0039_ineq_9994_w2aab3b7e1517b1b6b1aab1c14b1c15Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0431.png" /><tex-math>{H^{*}(\operatorname{Hess}(N,I))}</tex-math></alternatives></inline-formula> and <inline-formula id="j_crelle-2018-0039_ineq_9993_w2aab3b7e1517b1b6b1aab1c14b1c17Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0432.png" /><tex-math>{H^{*}(\operatorname{Hess}(S,I))^{W } }</tex-math></alternatives></inline-formula>,
    the invariants in <inline-formula id="j_crelle-2018-0039_ineq_9992_w2aab3b7e1517b1b6b1aab1c14b1c19Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0433.png" /><tex-math>{H^{*}(\operatorname{Hess}(S,I))}</tex-math></alternatives></inline-formula> under an action of the Weyl group <italic>W</italic> of <italic>G</italic>.
    This isomorphism is shown
    for general Lie type,
    and generalizes Borel’s celebrated theorem showing that the coinvariant algebra of <italic>W</italic> is isomorphic to the cohomology ring of the flag variety <inline-formula id="j_crelle-2018-0039_ineq_9991_w2aab3b7e1517b1b6b1aab1c14b1c27Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0410.png" /><tex-math>{G/B}</tex-math></alternatives></inline-formula>.

    This surprising connection between Hessenberg varieties and hyperplane
    arrangements enables us to produce a number of interesting
    consequences. For instance, the surjectivity of the restriction map
    <inline-formula id="j_crelle-2018-0039_ineq_9990_w2aab3b7e1517b1b6b1aab1c14b2b1Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0428.png" /><tex-math>{H^{*}(G/B)\to H^{*}(\operatorname{Hess}(N,I))}</tex-math></alternatives></inline-formula> announced by Dale
    Peterson
    and an affirmative answer to
    a conjecture of Sommers and Tymoczko are immediate consequences. We also
    give an explicit ring presentation of <inline-formula id="j_crelle-2018-0039_ineq_9989_w2aab3b7e1517b1b6b1aab1c14b2b3Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0431.png" /><tex-math>{H^{*}(\operatorname{Hess}(N,I))}</tex-math></alternatives></inline-formula> in
    types <italic>B</italic>, <italic>C</italic>, and <italic>G</italic>. Such a presentation was already known in type
    <italic>A</italic> and when <inline-formula id="j_crelle-2018-0039_ineq_9988_w2aab3b7e1517b1b6b1aab1c14b2c13Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0711.png" /><tex-math>{\operatorname{Hess}(N,I)}</tex-math></alternatives></inline-formula> is the Peterson variety. Moreover, we find
    the volume polynomial of <inline-formula id="j_crelle-2018-0039_ineq_9987_w2aab3b7e1517b1b6b1aab1c14b2c15Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0711.png" /><tex-math>{\operatorname{Hess}(N,I)}</tex-math></alternatives></inline-formula> and see that the hard
    Lefschetz property and the Hodge–Riemann relations hold for
    <inline-formula id="j_crelle-2018-0039_ineq_9986_w2aab3b7e1517b1b6b1aab1c14b2c17Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2018-0039_eq_0711.png" /><tex-math>{\operatorname{Hess}(N,I)}</tex-math></alternatives></inline-formula>, despite the fact that it is a singular variety in general.

    DOI

    Scopus

    9
    被引用数
    (Scopus)
  • Solomon–Terao algebra of hyperplane arrangements

    Takuro ABE, Toshiaki MAENO, Satoshi MURAI, Yasuhide NUMATA

    Journal of the Mathematical Society of Japan   71 ( 4 ) 1027 - 1047  2019年10月  [査読有り]

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Local h-Vectors of Quasi-Geometric and Barycentric Subdivisions

    Juhnke-Kubitzke Martina, Murai Satoshi, Sieg Richard

    DISCRETE & COMPUTATIONAL GEOMETRY   61 ( 2 ) 364 - 379  2019年03月  [査読有り]

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • The Numbers of Edges of 5-Polytopes with a Given Number of Vertices

    Kusunoki Takuya, Murai Satoshi

    ANNALS OF COMBINATORICS   23 ( 1 ) 89 - 101  2019年03月  [査読有り]

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • A generalized lower bound theorem for balanced manifolds

    Juhnke-Kubitzke Martina, Murai Satoshi, Novik Isabella, Sawaske Connor

    MATHEMATISCHE ZEITSCHRIFT   289 ( 3-4 ) 921 - 942  2018年08月  [査読有り]

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Balanced generalized lower bound inequality for simplicial polytopes

    Martina Juhnke-Kubitzke, Satoshi Murai

    Selecta Mathematica, New Series   24 ( 2 ) 1677 - 1689  2018年04月  [査読有り]

     概要を見る

    A remarkable and important property of face numbers of simplicial polytopes is the generalized lower bound inequality, which says that the h-numbers of any simplicial polytope are unimodal. Recently, for balanced simplicial d-polytopes, that is simplicial d-polytopes whose underlying graphs are d-colorable, Klee and Novik proposed a balanced analogue of this inequality, that is stronger than just unimodality. The aim of this article is to prove this conjecture of Klee and Novik. For this, we also show a Lefschetz property for rank-selected subcomplexes of balanced simplicial polytopes and thereby obtain new inequalities for their h-numbers.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • Balanced subdivisions and flips on surfaces

    Satoshi Murai, Yusuke Suzuki

    Proceedings of the American Mathematical Society   146 ( 3 ) 939 - 951  2018年  [査読有り]

     概要を見る

    In this paper, we show that two balanced triangulations of a closed surface are not necessarily connected by a sequence of balanced stellar subdivisions and welds. This answers a question posed by Izmestiev, Klee and Novik. We also show that two balanced triangulations of a closed surface are connected by a sequence of three local operations, which we call the pentagon contraction, the balanced edge subdivision and the balanced edge weld. In addition, we prove that two balanced triangulations of the 2-sphere are connected by a sequence of pentagon contractions and their inverses if none of them are the octahedral sphere.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • LEFSCHETZ PROPERTIES OF BALANCED 3-POLYTOPES

    Cook David II, Juhnke-Kubitzke Martina, Murai Satoshi, Nevo Eran

    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS   48 ( 3 ) 769 - 790  2018年  [査読有り]

    DOI

  • On stacked triangulated manifolds

    Basudeb Datta, Satoshi Murai

    ELECTRONIC JOURNAL OF COMBINATORICS   24 ( 4 )  2017年10月  [査読有り]

     概要を見る

    We prove two results on stacked triangulated manifolds in this paper: (a) every stacked triangulation of a connected manifold with or without boundary is obtained from a simplex or the boundary of a simplex by certain combinatorial operations; (b) in dimension d &gt;= 4, if Delta is a tight connected closed homology d-manifold whose ith homology vanishes for 1 &lt; i &lt; d - 1, then Delta is a stacked triangulation of a manifold.These results give affirmative answers to questions posed by Novik and Swartz and by Effenberger.

  • Face numbers and the fundamental group

    Satoshi Murai, Isabella Novik

    ISRAEL JOURNAL OF MATHEMATICS   222 ( 1 ) 297 - 315  2017年10月  [査読有り]

     概要を見る

    We resolve a conjecture of Kalai asserting that the g(2)-number of any (finite) simplicial complex Delta that represents a normal pseudomanifold of dimension d &gt;= 3 is at least as large as ((d+2)(2))m(Delta), where m(Delta) denotes the minimum number of generators of the fundamental group of Delta. Furthermore, we prove that a weaker bound, h(2)(Delta) &gt;= ((d+1)(2))m(Delta), applies to any d-dimensional pure simplicial poset Delta all of whose faces of co-dimension &gt;= 2 have connected links. This generalizes a result of Klee. Finally, for a pure relative simplicial poset Psi all of whose vertex links satisfy Serre's condition (S-r), we establish lower bounds on h(1)(Psi) ,..., h(r)(Psi) in terms of the mu-numbers introduced by Bagchi and Datta.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • Face Numbers of Manifolds with Boundary

    Satoshi Murai, Isabella Novik

    INTERNATIONAL MATHEMATICS RESEARCH NOTICES   ( 12 ) 3603 - 3646  2017年06月  [査読有り]

     概要を見る

    We study face numbers of simplicial complexes that triangulate manifolds (or even normal pseudomanifolds) with boundary. Specifically, we establish a sharp lower bound on the number of interior edges of a simplicial normal pseudomanifold with boundary in terms of the number of interior vertices and relative Betti numbers. Moreover, for triangulations of manifolds with boundary all of whose vertex links have the weak Lefschetz property, we extend this result to sharp lower bounds on the number of higher-dimensional interior faces. Along the way we develop a version of Bagchi and Datta's sand mu-numbers for the case of relative simplicial complexes and prove stronger versions of the above statements with the Betti numbers replaced by the mu-numbers. Our results provide natural generalizations of known theorems and conjectures for closed manifolds and appear to be new even for the case of a ball.

    DOI

    Scopus

    8
    被引用数
    (Scopus)
  • A duality in Buchsbaum rings and triangulated manifolds

    Satoshi Murai, Isabella Novik, Ken-ichi Yoshida

    ALGEBRA & NUMBER THEORY   11 ( 3 ) 635 - 656  2017年  [査読有り]

     概要を見る

    Let 1 be a triangulated homology ball whose boundary complex is partial derivative Delta. A result of Hochster asserts that the canonical module of the Stanley-Reisner ring F[Delta] of Delta is isomorphic to the Stanley-Reisner module F[Delta, partial derivative Delta] of the pair (Delta, partial derivative Delta]. This result implies that an Artinian reduction of F[Delta, partial derivative Delta] is (up to a shift in grading) isomorphic to the Matlis dual of the corresponding Artinian reduction of F[Delta]. We establish a generalization of this duality to all triangulations of connected orientable homology manifolds with boundary. We also provide an explicit algebraic interpretation of the h ''-numbers of Buchsbaum complexes and use it to prove the monotonicity of h ''-numbers for pairs of Buchsbaum complexes as well as the unimodality of h ''-vectors of barycentric subdivisions of Buchsbaum polyhedral complexes. We close with applications to the algebraic manifold g-conjecture.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • Uniformly Cohen-Macaulay simplicial complexes and almost Gorenstein* simplicial complexes

    Naoyuki Matsuoka, Satoshi Murai

    JOURNAL OF ALGEBRA   455   14 - 31  2016年06月  [査読有り]

     概要を見る

    In this paper, we study simplicial complexes whose Stanley-Reisner rings are almost Gorenstein and have a-invariant zero. We call such a simplicial complex an almost Gorenstein* simplicial complex. To study the almost Gorenstein* property, we introduce a new class of simplicial complexes which we call uniformly Cohen-Macaulay simplicial complexes. A d-dimensional simplicial complex Delta is said to be uniformly Cohen-Macaulay if it is Cohen-Macaulay and, for any facet F of Delta, the simplicial complex Delta \ {F} is Cohen-Macaulay of dimension d. We investigate fundamental algebraic, combinatorial and topological properties of these simplicial complexes, and show that almost Gorenstein* simplicial complexes must be uniformly Cohen-Macaulay. By using this fact, we show that every almost Gorenstein* simplicial complex can be decomposed into those of having one dimensional top homology. Also, we give a combinatorial criterion of the almost Gorenstein* property for simplicial complexes of dimension &lt;= 2. (C) 2016 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • ON HILBERT FUNCTIONS OF GENERAL INTERSECTIONS OF IDEALS

    Giulio Caviglia, Satoshi Murai

    NAGOYA MATHEMATICAL JOURNAL   222 ( 1 ) 61 - 73  2016年06月  [査読有り]

     概要を見る

    Let I and J be homogeneous ideals in a standard graded polynomial ring. We study upper bounds of the Hilbert function of the intersection of I and g(J), where g is a general change of coordinates. Our main result gives a generalization of Green's hyperplane section theorem.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Tight combinatorial manifolds and graded Betti numbers

    Satoshi Murai

    COLLECTANEA MATHEMATICA   66 ( 3 ) 367 - 386  2015年09月  [査読有り]

     概要を見る

    In this paper, we study the conjecture of Kuhnel and Lutz, who state that a combinatorial triangulation of the product of two spheres with is tight if and only if it has exactly vertices. To approach this conjecture, we use graded Betti numbers of Stanley-Reisner rings. By using recent results on graded Betti numbers, we prove that the only if part of the conjecture holds when and that the if part of the conjecture holds for triangulations all whose vertex links are simplicial polytopes. We also apply this algebraic approach to obtain lower bounds on the numbers of vertices and edges of triangulations of manifolds and pseudomanifolds.

    DOI

    Scopus

    18
    被引用数
    (Scopus)
  • REGULARITY BOUNDS FOR KOSZUL CYCLES

    Aldo Conca, Satoshi Murai

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   143 ( 2 ) 493 - 503  2015年02月  [査読有り]

     概要を見る

    We study the Castelnuovo-Mumford regularity of the module of Koszul cycles Z(t)(I, M) of a homogeneous ideal I in a polynomial ring S with respect to a graded module M in the homological position t is an element of N. Under mild assumptions on the base field we prove that reg Z(t)(I, S) is a subadditive function of t when dim S/I = 0. For Borel-fixed ideals I, J we prove that reg Z(t)(I, S/J) &lt;= t(1 + reg I) + reg S/J, a result already announced by Bruns, Conca and Romer.

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • Invariance of Pontrjagin classes for Bott manifolds

    Suyoung Choi, Mikiya Masuda, Satoshi Murai

    ALGEBRAIC AND GEOMETRIC TOPOLOGY   15 ( 2 ) 965 - 986  2015年  [査読有り]

     概要を見る

    A Bott manifold is the total space of some iterated CP1 -bundles over a point. We prove that any graded ring isomorphism between the cohomology rings of two Bott manifolds preserves their Pontrjagin classes. Moreover, we prove that such an isomorphism is induced from a diffeomorphism if the Bott manifolds are Z/2 -trivial, where a Bott manifold is called Z/2 -trivial if its cohomology ring with Z/2 -coefficients is isomorphic to that of a product of copies of CP1.

    DOI

    Scopus

    12
    被引用数
    (Scopus)
  • Squarefree P-modules and the cd-index

    Satoshi Murai, Kohji Yanagawa

    ADVANCES IN MATHEMATICS   265   241 - 279  2014年11月  [査読有り]

     概要を見る

    In this paper, we introduce a new algebraic concept, which we call squarefree P-modules. This concept is inspired from Karu's proof of the non-negativity of the cd-indices of Gorenstein* posets, and supplies a way to study cd-indices from the viewpoint of commutative algebra. Indeed, by using the theory of squarefree P-modules, we give several new algebraic and combinatorial results on CW-posets. First, we define an analogue of the cd-index for any CW-poset and prove its non-negativity when a CW-poset is Cohen-Macaulay. This result proves that the h-vector of the barycentric subdivision of a Cohen Macaulay regular CW-complex is unimodal. Second, we prove that the Stanley-Reisner ring of the barycentric subdivision of an odd dimensional Cohen Macaulay polyhedral complex has the weak Lefschetz property. Third, we obtain sharp upper bounds of the cd-indices of Gorenstein* posets for a fixed rank generating function. (C) 2014 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    8
    被引用数
    (Scopus)
  • THE FLAG f-VECTORS OF GORENSTEIN* ORDER COMPLEXES OF DIMENSION 3

    Satoshi Murai, Eran Nevo

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   142 ( 5 ) 1527 - 1538  2014年05月  [査読有り]

     概要を見る

    We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f-vectors of order complexes triangulating rational homology 3-spheres, and show they are also the characterization of the flag f-vectors of the subfamily of regular CW-complexes homeomorphic to the 3-sphere. As a corollary, we characterize the f-vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization gives rise to a speculated intimate connection between the f-vectors of flag homology spheres and the f-vectors of Gorenstein* order complexes.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • On r-stacked triangulated manifolds

    Satoshi Murai, Eran Nevo

    JOURNAL OF ALGEBRAIC COMBINATORICS   39 ( 2 ) 373 - 388  2014年03月  [査読有り]

     概要を見る

    The notion of r-stackedness for simplicial polytopes was introduced by McMullen and Walkup in 1971 as a generalization of stacked polytopes. In this paper, we define the r-stackedness for triangulated homology manifolds and study its basic properties. In addition, we find a new necessary condition for face vectors of triangulated manifolds when all the vertex links are polytopal.

    DOI

    Scopus

    13
    被引用数
    (Scopus)
  • On ideals with the Rees property

    Juan Migliore, Rosa M. Miro-Roig, Satoshi Murai, Uwe Nagel, Junzo Watanabe

    ARCHIV DER MATHEMATIK   101 ( 5 ) 445 - 454  2013年11月  [査読有り]

     概要を見る

    A homogeneous ideal I of a polynomial ring S is said to have the Rees property if, for any homogeneous ideal which contains I, the number of generators of J is smaller than or equal to that of I. A homogeneous ideal is said to be -full if for some , where is the graded maximal ideal of . It was proved by one of the authors that -full ideals have the Rees property and that the converse holds in a polynomial ring with two variables. In this note, we give examples of ideals which have the Rees property but are not -full in a polynomial ring with more than two variables. To prove this result, we also show that every Artinian monomial almost complete intersection in three variables has the Sperner property.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • FACE VECTORS OF SIMPLICIAL CELL DECOMPOSITIONS OF MANIFOLDS

    Satoshi Murai

    ISRAEL JOURNAL OF MATHEMATICS   195 ( 1 ) 187 - 213  2013年06月  [査読有り]

     概要を見る

    In this paper, we study face vectors of simplicial posets that are the face posets of cell decompositions of topological manifolds without boundary. We characterize all possible face vectors of simplicial posets whose geometric realizations are homeomorphic to the product of spheres. As a corollary, we obtain the characterization of face vectors of simplicial posets whose geometric realizations are odd-dimensional manifolds without boundary.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • On the generalized lower bound conjecture for polytopes and spheres

    Satoshi Murai, Eran Nevo

    ACTA MATHEMATICA   210 ( 1 ) 185 - 202  2013年03月  [査読有り]

     概要を見る

    In 1971, McMullen and Walkup posed the following conjecture, which is called the generalized lower bound conjecture: If P is a simplicial d-polytope then its h-vector (h (0), h (1), aEuro broken vertical bar, h (d) ) satisfies . Moreover, if h (r-1) = h (r) for some then P can be triangulated without introducing simplices of dimension a parts per thousand currency signd - r.
    The first part of the conjecture was solved by Stanley in 1980 using the hard Lefschetz theorem for projective toric varieties. In this paper, we give a proof of the remaining part of the conjecture. In addition, we generalize this result to a certain class of simplicial spheres, namely those admitting the weak Lefschetz property.

    DOI

    Scopus

    30
    被引用数
    (Scopus)
  • Regularity bounds for binomial edge ideals

    Kazunori Matsuda, Satoshi Murai

    Journal of Commutative Algebra   5 ( 1 ) 141 - 149  2013年  [査読有り]

     概要を見る

    We show that the Castelnuovo-Mumford regularity of the binomial edge ideal of a graph is bounded below by the length of its longest induced path and bounded above by the number of its vertices. © 2013 Rocky Mountain Mathematics Consortium.

    DOI

    Scopus

    52
    被引用数
    (Scopus)
  • Sharp upper bounds for the Betti numbers of a given Hilbert polynomial

    Giulio Caviglia, Satoshi Murai

    ALGEBRA & NUMBER THEORY   7 ( 5 ) 1019 - 1064  2013年  [査読有り]

     概要を見る

    We show that there exists a saturated graded ideal in a standard graded polynomial ring which has the largest total Betti numbers among all saturated graded ideals for a fixed Hilbert polynomial.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • H-vectors of simplicial cell balls

    Satoshi Murai

    Transactions of the American Mathematical Society   365 ( 3 ) 1533 - 1550  2013年  [査読有り]

     概要を見る

    A simplicial cell ball is a simplicial poset whose geometric realization is homeomorphic to a ball. Recently, Samuel Kolins gave a series of necessary conditions and sufficient conditions on h-vectors of simplicial cell balls, and characterized them up to dimension 6. In this paper, we extend Kolins' results. We characterize all possible h-vectors of simplicial cell balls in arbitrary dimension. © 2012 American Mathematical Society.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Hilbert schemes and Betti numbers over Clements-Lindstrom rings

    Satoshi Murai, Irena Peeva

    COMPOSITIO MATHEMATICA   148 ( 5 ) 1337 - 1364  2012年09月  [査読有り]

     概要を見る

    We show that the Hilbert scheme, that parameterizes all ideals with the same Hilbert function over a Clements-Lindstrom ring W, is connected. More precisely, we prove that every graded ideal is connected by a sequence of deformations to the lex-plus-powers ideal with the same Hilbert function. This is an analogue of Hartshorne's theorem that Grothendieck's Hilbert scheme is connected. We also prove a conjecture by Gasharov, Hibi, and Peeva that the lex ideal attains maximal Betti numbers among all graded ideals in W with a fixed Hilbert function.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • On the cd-index and gamma-vector of S*-shellable CW-spheres

    Satoshi Murai, Eran Nevo

    MATHEMATISCHE ZEITSCHRIFT   271 ( 3-4 ) 1309 - 1319  2012年08月  [査読有り]

     概要を見る

    We show that the gamma-vector of the order complex of any polytope is the f-vector of a balanced simplicial complex. This is done by proving this statement for a subclass of Stanley's S-shellable CW-spheres which includes all polytopes. The proof shows that certain parts of the cd-index, when specializing c = 1 and considering the resulted polynomial in d, are the f-polynomials of simplicial complexes that can be colored with "few" colors. We conjecture that the cd-index of a regular CW-sphere is itself the flag f-vector of a colored simplicial complex in a certain sense.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • LEFSCHETZ PROPERTIES AND THE VERONESE CONSTRUCTION

    Martina Kubitzke, Satoshi Murai

    MATHEMATICAL RESEARCH LETTERS   19 ( 5 ) 1043 - 1053  2012年  [査読有り]

     概要を見る

    In this paper, we investigate Lefschetz properties of Veronese subalgebras. We show that, for a sufficiently large r, the rth Veronese subalgebra of a Cohen-Macaulay standard graded K-algebra has properties similar to the weak and strong Lefschetz properties, which we call the 'quasi-weak' and 'almost strong' Lefschetz properties. By using this result, we obtain new results on h- and g-polynomials of Veronese subalgebras.

  • Spheres arising from multicomplexes

    Satoshi Murai

    JOURNAL OF COMBINATORIAL THEORY SERIES A   118 ( 8 ) 2167 - 2184  2011年11月  [査読有り]

     概要を見る

    In 1992, Thomas Bier introduced a surprisingly simple way to construct a large number of simplicial spheres. He proved that, for any simplicial complex Delta on the vertex set V with Delta not equal 2(v) the deleted join of Delta with its Alexander dual Delta(v) is a combinatorial sphere. In this paper, we extend Bier's construction to multicomplexes, and study their combinatorial and algebraic properties. We show that all these spheres are shellable and edge decomposable. which yields a new class of many shellable edge decomposable spheres that are not realizable as polytopes. It is also shown that these spheres are related to polarizations and Alexander duality for monomial ideals which appear in commutative algebra theory. (C) 2011 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • The Lex-Plus-Powers Conjecture holds for pure powers

    Jeff Mermin, Satoshi Murai

    ADVANCES IN MATHEMATICS   226 ( 4 ) 3511 - 3539  2011年03月  [査読有り]

     概要を見る

    We prove Evans&apos; Lex-Plus-Powers Conjecture for ideals containing a monomial regular sequence. (C) 2010 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    17
    被引用数
    (Scopus)
  • FREE RESOLUTIONS OF LEX IDEALS OVER A KOSZUL TORIC RING

    Satoshi Murai

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   363 ( 2 ) 857 - 885  2011年02月  [査読有り]

     概要を見る

    In this paper we study the minimal free resolution of lex-ideals over a Koszul toric ring. In particular we study in which toric ring R all lex-ideals are compare twis linear. We give a certain necessity aid sufficiently condition for this property and show that lex-ideals in a strongly Koszul toric ring are componentwise linear. In addition, it is shown that, in the toric ring arising from the Segre product P(1) x ... x P(1), every Hilbert function of graded ideal is attained by a lex-ideals and that lex-ideals have the greatest graded Betti numbers among all ideals having the same Hilbert function.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Hilbert schemes and maximal Betti numbers over veronese rings

    Vesselin Gasharov, Satoshi Murai, Irena Peeva

    MATHEMATISCHE ZEITSCHRIFT   267 ( 1-2 ) 155 - 172  2011年02月  [査読有り]

     概要を見る

    Macaulay&apos;s Theorem (Macaulay in Proc. Lond Math Soc 26:531-555, 1927) characterizes the Hilbert functions of graded ideals in a polynomial ring over a field. We characterize the Hilbert functions of graded ideals in a Veronese ring R (the coordinate ring of a Veronese embedding of P (r-1)). We also prove that the Hilbert scheme, which parametrizes all graded ideals in R with a fixed Hilbert function, is connected; this is an analogue of Hartshorne&apos;s Theorem (Hartshorne in Math. IHES 29:5-48, 1966) that Hilbert schemes over a polynomial ring are connected. Furthermore, we prove that each lex ideal in R has the greatest Betti numbers among all graded ideals with the same Hilbert function.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • REGULARITY OF CANONICAL AND DEFICIENCY MODULES FOR MONOMIAL IDEALS

    Manoj Kummini, Satoshi Murai

    PACIFIC JOURNAL OF MATHEMATICS   249 ( 2 ) 377 - 383  2011年02月  [査読有り]

     概要を見る

    We show that the Castelnuovo-Mumford regularity of the canonical or a deficiency module of the quotient of a polynomial ring by a monomial ideal is bounded by its dimension.

    DOI

    Scopus

  • Applications of mapping cones over Clements-Lindstrom rings

    Vesselin Gasharov, Satoshi Murai, Irena Peeva

    JOURNAL OF ALGEBRA   325 ( 1 ) 34 - 55  2011年01月  [査読有り]

     概要を見る

    We prove that Gotzmann's Persistence Theorem holds over every Clements-Lindstrom ring. We also construct the infinite minimal free resolution of a square-free Borel ideal over such a ring. (C) 2010 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • Betti numbers of lex ideals over some Macaulay-Lex rings

    Jeff Mermin, Satoshi Murai

    JOURNAL OF ALGEBRAIC COMBINATORICS   31 ( 2 ) 299 - 318  2010年03月  [査読有り]

     概要を見る

    Let A=K[x (1),aEuro broken vertical bar,x (n) ] be a polynomial ring over a field K and M a monomial ideal of A. The quotient ring R=A/M is said to be Macaulay-Lex if every Hilbert function of a homogeneous ideal of R is attained by a lex ideal. In this paper, we introduce some new Macaulay-Lex rings and study the Betti numbers of lex ideals of those rings. In particular, we prove a refinement of the Frankl-Furedi-Kalai Theorem which characterizes the face vectors of colored complexes. Additionally, we disprove a conjecture of Mermin and Peeva that lex-plus-M ideals have maximal Betti numbers when A/M is Macaulay-Lex.

    DOI

    Scopus

    7
    被引用数
    (Scopus)
  • Betti numbers of chordal graphs and f -vectors of simplicial complexes

    Takayuki Hibi, Kyouko Kimura, Satoshi Murai

    JOURNAL OF ALGEBRA   323 ( 6 ) 1678 - 1689  2010年03月  [査読有り]

     概要を見る

    Let G he a chordal graph and I(G) its edge ideal. Let beta(I(G)) = (beta(0), beta(1).....beta(p)) denote the Betti sequence of I(G), where beta(1) stands for the ith total Betti number of I(G) and where p is the projective dimension of I(G). It will be shown that there exists a simplicial complex Delta of dimension p whose f-vector f(Delta) = (f(0). f(1).....f(p)) coincides with beta(I(G)). (C) 2010 Elsevier Inc, All rights reserved.

    DOI

    Scopus

    3
    被引用数
    (Scopus)
  • Algebraic shifting of strongly edge decomposable spheres

    Satoshi Murai

    JOURNAL OF COMBINATORIAL THEORY SERIES A   117 ( 1 ) 1 - 16  2010年01月  [査読有り]

     概要を見る

    Recently, Nevo introduced the notion of strongly edge decomposable spheres. in this paper, we characterize algebraic shifted complexes of those spheres. Algebraically, this result yields the characterization of the generic initial ideal of the Stanley-Reisner ideal of Gorenstein* complexes having the strong Lefschetz property in characteristic 0. (C) 2009 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    10
    被引用数
    (Scopus)
  • ON FACE VECTORS OF BARYCENTRIC SUBDIVISIONS OF MANIFOLDS

    Satoshi Murai

    SIAM JOURNAL ON DISCRETE MATHEMATICS   24 ( 3 ) 1019 - 1037  2010年  [査読有り]

     概要を見る

    We study face vectors of barycentric subdivisions of simplicial homology manifolds. Recently, Kubitzke and Nevo proved that the g-vector of the barycentric subdivision of a Cohen-Macaulay simplicial complex is an M-vector, which in particular proves the g-conjecture for barycentric subdivisions of simplicial homology spheres. In this paper, we prove an analogue of this result for Buchsbaum simplicial posets and simplicial homology manifolds.

    DOI

    Scopus

    8
    被引用数
    (Scopus)
  • H-VECTORS OF SIMPLICIAL COMPLEXES WITH SERRE&apos;S CONDITIONS

    Satoshi Murai, Naoki Terai

    MATHEMATICAL RESEARCH LETTERS   16 ( 5-6 ) 1015 - 1028  2009年09月  [査読有り]

     概要を見る

    We study h-vectors of simplicial complexes which satisfy Serre&apos;s condition (S(r)). Let r be a positive integer. We say that a simplicial complex Delta satisfies Serre&apos;s condition (S(r)) if (H) over tilde (i)(lk(Delta)(F); K) = 0 for all F is an element of Delta and for all i &lt; min {r-1, dim lk(Delta)(F)}, where lk(Delta) (F) is the link of Delta with respect to F and where &lt;(H)over tilde&gt;(i) (Delta; K) is the reduced homology groups of Delta over a field K. The main result of this paper is that if Delta satisfies Serre&apos;s condition (S(r)) then (i) h(k) (Delta) is non-negative for k = 0, 1, ... , r and (ii) Sigma(k &gt;= r) h(k) (Delta) is non-negative.

  • Face vectors of two-dimensional Buchsbaum complexes

    Satoshi Murai

    ELECTRONIC JOURNAL OF COMBINATORICS   16 ( 1 )  2009年05月  [査読有り]

     概要を見る

    In this paper, we characterize all possible h-vectors of 2-dimensional Buchsbaum simplicial complexes.

  • ALGEBRAIC SHIFTING AND GRADED BETTI NUMBERS

    Satoshi Murai, Takayuki Hibi

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   361 ( 4 ) 1853 - 1865  2009年  [査読有り]

     概要を見る

    Let S = K[x(1),...,x(n),] denote the polynomial ring in n variables over a field K with each deg x(i) = 1. Let Delta be a simplicial complex on [n] = {1,...,n} and I(Delta) subset of S its Stanley-Reisner ideal. We write Delta(e) for the exterior algebraic shifted complex of Delta and Delta(c) for a combinatorial shifted complex of Delta. Let beta(ii+j) (I(Delta)) = dim(K) Tor(i) (K, I(Delta))(i+j) denote the graded Betti numbers of I(Delta). In the present paper it will be proved that (i) beta(ii+j) (I(Delta e)) &lt;= beta(ii+j) (I(Delta c)) for all i and j, where the base field is infinite, and (ii) beta(ii+j) (I(Delta)) &lt;= beta(ii+j) (I(Delta c)) for all i and j, where the base field is arbitrary. Thus in particular one has beta(ii+j) (I(Delta)) &lt;= beta(ii+j) (I(Delta lex)) for all i and j, where Delta(lex) is the unique lexsegment simplicial complex with the same f-vector as Delta and where the base field is arbitrary.

    DOI

    Scopus

    5
    被引用数
    (Scopus)
  • Gotzmann ideals of the polynomial ring

    Satoshi Murai, Takayuki Hibi

    MATHEMATISCHE ZEITSCHRIFT   260 ( 3 ) 629 - 646  2008年11月  [査読有り]

     概要を見る

    Let A = K[x(1),..., x (n)] denote the polynomial ring in n variables over a field K. We will classify all the Gotzmann ideals of A with at most n generators. In addition, we will study Hilbert functions H for which all homogeneous ideals of A with the Hilbert function H have the same graded Betti numbers. These Hilbert functions will be called inflexible Hilbert functions. We introduce the notion of segmentwise critical Hilbert functions and show that segmentwise critical Hilbert functions are inflexible.

    DOI

    Scopus

    9
    被引用数
    (Scopus)
  • Borel-plus-powers monomial ideals

    Satoshi Murai

    JOURNAL OF PURE AND APPLIED ALGEBRA   212 ( 6 ) 1321 - 1336  2008年06月  [査読有り]

     概要を見る

    Let S = K[x(1), ..., x(n)] be a standard graded polynomial ring over a field K. In this paper, we show that the lex-plus-powers ideal has the largest graded Betti numbers among all Borel-plus-powers monomial ideals with the same Hilbert function. In addition p in the case of characteristic 0, by using this result, we prove the lex-plus-powers conjecture for graded ideals containing x(1)(p), ..., x(n)(p), where p is a prime number. (C) 2007 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    8
    被引用数
    (Scopus)
  • Rigidity of linear strands and generic initial ideals

    Satoshi Murai, Pooja Singla

    NAGOYA MATHEMATICAL JOURNAL   190   35 - 61  2008年06月  [査読有り]

     概要を見る

    Let K be a field, S a polynomial ring and E an exterior algebra over K, both in a finite set of variables. We study rigidity properties of the graded Betti numbers of graded ideals in S and E when passing to their generic initial ideals. First, we prove that if the graded Betti numbers beta(S)(ii+k)(S/&gt;I) = beta(S)(ii+k)(S/Gin(I)) for all q &gt;= i, where I subset of S is a graded ideal. Second, we show that if beta(E)(ii+k)(E/I) = beta(E)(ii+k)(E/Gin(I)) for all q &gt;= 1, where I subset of E is a graded ideal. In addition, it will be shown that the graded Betti numbers beta(R)(ii+k)(R/I) = beta(R)(ii+k)(R/Gin(I)) for all i &gt;= 1 if and only if I-&lt; k &gt; and I &lt; k+1 &gt; have a linear resolution. Here (&lt; d &gt;)is the ideal generated by all homogeneous elements in I of degree d, and R can be either the polynomial ring or the exterior algebra.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Betti numbers of strongly color-stable ideals and squarefree strongly color-stable ideals

    Satoshi Murai

    JOURNAL OF ALGEBRAIC COMBINATORICS   27 ( 3 ) 383 - 398  2008年05月  [査読有り]

     概要を見る

    In this paper, we will show that the color-squarefree operation does not change the graded Betti numbers of strongly color-stable ideals. In addition, we will give an example of a nonpure balanced complex which shows that colored algebraic shifting, which was introduced by Babson and Novik, does not always preserve the dimension of reduced homology groups of balanced simplicial complexes.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Componentwise linear ideals with minimal or maximal Betti numbers

    Juergen Herzog, Takayuki Hibi, Satoshi Murai, Yukihide Takayama

    ARKIV FOR MATEMATIK   46 ( 1 ) 69 - 75  2008年04月  [査読有り]

     概要を見る

    We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • A combinatorial proof of Gotzmann's persistence theorem for monomial ideals

    Satoshi Murai

    EUROPEAN JOURNAL OF COMBINATORICS   29 ( 1 ) 322 - 333  2008年01月  [査読有り]

     概要を見る

    Gotzmann proved the persistence for minimal growth of Hilbert functions of homogeneous ideals. His theorem is called Gotzmann's persistence theorem. In this paper, based on the combinatorics of binomial coefficients, a simple combinatorial proof of Gotzmann's persistence theorem in the special case of monomial ideals is given. (c) 2006 Elsevier Ltd. All rights reserved.

    DOI

  • The depth of an ideal with a given Hilbert function

    Satoshi Murai, Takayuki Hibi

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY   136 ( 5 ) 1533 - 1538  2008年  [査読有り]

     概要を見る

    Let A = K[x(1),...,x(n)] denote the polynomial ring in n variables over a field K with each deg x(i) = 1. Let I be a homogeneous ideal of A with I not equal A and H-A/I the Hilbert function of the quotient algebra A/I. Given a numerical function H:N -&gt; N satisfying H = H-A/I for some homogeneous ideal I of A, we write A(H) for the set of those integers 0 &lt;= r &lt;= n such that there exists a homogeneous ideal I of A with H-A/I=H and with depth A/I = r. It will be proved that one has either AH = {0, 1,...,b} for some 0 &lt;= b &lt;= n or |A(H)| = 1.

    DOI

    Scopus

    8
    被引用数
    (Scopus)
  • Kruskal-Katona type theorems for clique complexes arising from chordal and strongly chordal graphs

    Juergen Herzog, Takayuki Hibi, Satoshi Murai, Ngo Viet Trung, Xinxian Zheng

    COMBINATORICA   28 ( 3 ) 315 - 323  2008年  [査読有り]

     概要を見る

    A forest is the clique complex of a strongly chordal graph and a quasi-forest is the clique complex of a chordal graph. Kruskal-Katona type theorems for forests, quasi-forests, pure forests and pure quasi-forests will be presented.

    DOI

    Scopus

    9
    被引用数
    (Scopus)
  • Hilbert functions of d-regular ideals

    Satoshi Murai

    JOURNAL OF ALGEBRA   317 ( 2 ) 658 - 690  2007年11月  [査読有り]

     概要を見る

    In the present paper, we characterize all possible Hilbert functions of graded ideals in a polynomial ring whose regularity is smaller than or equal to d, where d is a positive integer. In addition, we prove the following result which is a generalization of Bigatti, Hulett and Pardue's result: Let p &gt;= 0 and d &gt; 0 be integers. If the base field is a field of characteristic 0 and there is a graded ideal I whose projective dimension proj dirn(I) is smaller than or equal to p and whose regularity reg(I) is smaller than or equal to d. then there exists a monomial ideal L having the maximal graded Belli numbers among graded ideals J which have the same Hilbert function as 1 and which satisfy proj dim(J) &lt;= p and reg(J) &lt;=, d. We also prove the same fact for squarefree monomial ideals. The main methods for proofs are generic initial ideals and combinatorics on strongly stable ideals. (c) 2007 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    6
    被引用数
    (Scopus)
  • Generic initial ideals and squeezed spheres

    Satoshi Murai

    ADVANCES IN MATHEMATICS   214 ( 2 ) 701 - 729  2007年10月  [査読有り]

     概要を見る

    In 1988 Kalai constructed a large class of simplicial spheres, called squeezed spheres, and in 1991 presented a conjecture about generic initial ideals of Stanley-Reisner ideals of squeezed spheres. In the present paper this conjecture will be proved. In order to prove Kalai's conjecture, based on the fact that every squeezed (d-1)-sphere is the boundary of a certain d-ball, called a squeezed d-ball, generic initial ideals of Stanley-Reisner ideals of squeezed balls will be determined. In addition, generic initial ideals of exterior face ideals of squeezed balls are determined. On the other hand, we study the squeezing operation, which assigns to each Gorenstein* complex Gamma having the weak Lefschetz property a squeezed sphere Sq(Gamma), and show that this operation increases graded Betti numbers. (c) 2007 Elsevier Inc. All rights reserved.

    DOI

    Scopus

    12
    被引用数
    (Scopus)
  • Generic initial ideals and exterior algebraic shifting of the join of simplicial complexes

    Satoshi Murai

    ARKIV FOR MATEMATIK   45 ( 2 ) 327 - 336  2007年10月  [査読有り]

     概要を見る

    In this paper, the relation between algebraic shifting and join which was conjectured by Eran Nevo will be proved. Let sigma and tau be simplicial complexes and sigma * tau be their join. Let J(sigma) be the exterior face ideal of sigma and Delta(sigma) the exterior algebraic shifted complex of sigma. Assume that sigma * tau is a simplicial complex on [n] = {1, 2,..., n}. For any d-subset S subset of [n], let m &lt;=(rev) s (sigma) denote the number of d-subsets R is an element of sigma which are equal to or smaller than S with respect to the reverse lexicographic order. We will prove that m &lt;=(rev)s (Delta (sigma*tau))&gt; m &lt;= S-rev (Delta (Delta(sigma)* Delta (tau))) for all S subset of[n]. To prove this fact, we also prove that m &lt;=(rev)s(Delta(sigma))&gt;-m &lt;= S-rev(Delta(Delta(phi)(sigma))) for all S subset of[n] and for all nonsingular matrices phi, where Delta(phi)(sigma) is the simplicial complex defined by J(Delta phi)(sigma)=in(phi(J sigma)).

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Algebraic shifting of cyclic polytopes and stacked polytopes

    Satoshi Murai

    DISCRETE MATHEMATICS   307 ( 14 ) 1707 - 1721  2007年06月  [査読有り]

     概要を見る

    Gil Kalai introduced the shifting-theoretic upper bound relation as a method to generalize the g-theorem for simplicial spheres by using algebraic shifting. We will study the connection between the shifting-theoretic upper bound relation and combinatorial shifting. Also, we will compute the exterior algebraic shifted complex of the boundary complex of the cyclic d-polytope as well as of a stacked d-polytope. It will turn out that, in both cases, the exterior algebraic shifted complex coincides with the symmetric algebraic shifted complex. (C) 2006 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    4
    被引用数
    (Scopus)
  • Maximal Betti numbers of Cohen-Macaulay complexes with a given f-vector

    Satoshi Murai, Takayuki Hibi

    ARCHIV DER MATHEMATIK   88 ( 6 ) 507 - 512  2007年06月  [査読有り]

     概要を見る

    Given the f-vector f = (f(0), f(1),...) of a Cohen-Macaulay simplicial complex, it will be proved that there exists a shellable simplicial complex Delta(f) with f (Delta(f)) = f such that, for any Cohen-Macaulay simplicial complex A with f(Delta) = f, one has beta(ij)(I Delta) &lt;= beta(ij)(I-Delta f) for all i and j, where f(Delta) is the f-vector of A and where beta(ij)(IA) are graded Betti numbers of the Stanley-Reisner ideal I-Delta of Delta.

    DOI

    Scopus

  • Algebraic shifting of finite graphs

    Satoshi Murai

    COMMUNICATIONS IN ALGEBRA   35 ( 10 ) 3071 - 3094  2007年  [査読有り]

     概要を見る

    In the present article, for bipartite graphs and chordal graphs, their exterior algebraic shifted graph and their symmetric algebraic shifted graph are studied. First, we will determine the symmetric algebraic shifted graph of complete bipartite graphs. It turns out that for a &gt;= 3 and b &gt;= 3, the exterior algebraic shifted graph of the complete bipartite graph K-a,K-b of size a, b is different from the symmetric algebraic shifted graph of K-a,K-b. Second, we will show that the exterior algebraic shifted graph of any chordal graph G coincides with the symmetric algebraic shifted graph of G. In addition, it will be shown that the exterior algebraic shifted graph of any chordal graph G is equal to some combinatorial shifted graph of G.

    DOI

    Scopus

    1
    被引用数
    (Scopus)
  • Gotzmann monomial ideals

    Murai Satoshi

    ILLINOIS JOURNAL OF MATHEMATICS   51 ( 3 ) 843 - 852  2007年  [査読有り]

  • Gin and Lex of certain monomial ideals

    Satoshi Murai, Takayuki Hibi

    MATHEMATICA SCANDINAVICA   99 ( 1 ) 76 - 86  2006年  [査読有り]

     概要を見る

    Let A = K[x(1),..., x(n)] denote the polynomial ring in n variables over a field K of characteristic 0 with each deg x(i) = 1. Given arbitrary integers i and j with 2 &lt;= i &lt;= n and 3 &lt;= j &lt;= n, we will construct a monomial ideal I subset of A such that (i) beta k(I) &lt; beta(k)(Gin(I)) for all k &lt; i, (ii) beta(i) (I) = beta(i) (Gin (I)), (iii) beta(l) (Gin (I)) &lt; beta(l) (Lex (I)) for all l &lt; j and (iv) beta(j) (Gin (I)) = beta(j) (Lex (I)), where Gin(I) is the generic initial ideal of I with respect to the reverse lexicographic order induced by x(1) &gt;... &gt; x(n) and where Lex(I) is the lexsegment ideal with the same Hilbert function as I.

▼全件表示

講演・口頭発表等

  • 多様体の単体分割の持つ組合せ論的・代数的対称性

    村井 聡

    2017年度日本数学会秋季総合分科会 特別講演  

    発表年月: 2017年09月

  • 凸多面体の面の数え上げ論の近況

    村井 聡

    2017年度日本数学会年会 応用数学分科会特別セッション「凸多面体の数え上げ論の近況」  

    発表年月: 2017年03月

  • 多様体の単体分割の組合せ論と代数

    村井 聡

    第63回トポロジーシンポジウム  

    発表年月: 2016年07月

  • 多様体の三角形分割の組合せ論と可換代数,

    村井 聡

    第60回代数学シンポジウム  

    発表年月: 2015年08月

  • 単体的セル複体の面の数え上げの話

    村井 聡

    第56回代数学シンポジウム  

    発表年月: 2011年08月

Misc

  • A filtration on the cohomology rings of regular nilpotent Hessenberg varieties

    Megumi Harada, Tatsuya Horiguchi, Satoshi Murai, Martha Precup, Julianna Tymoczko

    arXiv:1912.12892    2019年12月

その他

  • The Japanese Conference on Combinatorics and its Applications in Sendai (仙台)

    2018年
     
     

     概要を見る

    組織委員

  • Lefschetz Properties in Algebra, Geometry and Combinatorics (Mittag-Leffler研究所)

    2017年
     
     

     概要を見る

    組織委員

  • The Japanese Conference on Combinatorics and its Applications (京都)

    2016年
     
     

     概要を見る

    組織委員

  • The 26th International Conference on Formal Power Series and Algebraic Combinatorics (シカゴ)

    2014年
     
     

     概要を見る

    プログラム委員

  • Japan Conference on Graph Theory and Combinatorics (東京)

    2014年
     
     

     概要を見る

    組織委員

  • The 24th International Conference on Formal Power Series and Algebraic Combinatorics (名古屋)

    2012年
     
     

     概要を見る

    プログラム委員

▼全件表示

 

現在担当している科目

▼全件表示

 

他学部・他研究科等兼任情報

  • 教育・総合科学学術院   大学院教育学研究科

特定課題制度(学内資金)

  • 対称群の作用で固定される単項式イデアルの研究

    2020年   Claudiu

     概要を見る

    イデアルの自由分解に関する研究は、数学の可換環論の分野における主要な研究課題の一つである。本研究では、単項式イデアルであって、対称群の作用で固定されるものについて、その自由分解に関する研究を行った。 本研究の研究成果として、Claudiu Raicu(University of Notre Dame)との共同研究として、対称群の作用で固定される単項式イデアルのベッチ数を組合せ論的に記述することに成功した。ベッチ数は一般には計算が難しい量であるが、本研究結果は、この難しい不変量を組合せ論的な手法により簡単に計算する方法を与えるものである。

  • Hessenberg多様体のコホモロジ一環の環構造に関する研究

    2019年   村井 聡

     概要を見る

    Hessenberg多様体は、表現論、代数幾何、組合せ論などの様々な数学の分野と関連し、近年注目されている研究対象である。本研究では、Hessenberg多様体のコホモロジー環の環構造に関する研究を行い、Megumi Harada, Tatsuya Horiguchi, Martha Precup, Julianna Tymoczkoらとの共同研究によって、regular nilpotent Hessenberg多様体のコホモロジー環が綺麗なfiltration構造を持つことを発見し、flag多様体のコホモロジー環の持つ"monomial基底"に相当する概念をHessenberg多様体に一般化した。

  • Hessenberg多様体のコホモロジ一環の基底に関する研究

    2018年   堀口達也

     概要を見る

    Hessenberg多様体は、表現論、代数幾何、組合せ論などの様々な数学の分野と関連し、近年注目されている研究対象であり、特に、現在Hessenberg多様体のコホモロジー環に関する研究が盛んに行われている。 本研究では、regular nilpotent Hessenberg多様体のコホモロジー環の基底に関する研究を行い、その研究成果として、 HaradaとTymoczko らによって予想されたコホモロジー環の基底の候補となるシューベルト多項式の族が、型が(n-1,...,n-1,n,...,n)の形をしているHessenberg多様体の場合に実際に基底となることを証明することに成功した。