李 天舒 (リ テンジョ)

写真a

所属

理工学術院 理工学術院総合研究所

職名

次席研究員(研究院講師)

兼担 【 表示 / 非表示

  • 理工学術院   先進理工学部

学歴 【 表示 / 非表示

  • 2010年
    -
    2013年

    早稲田大学   大学院先進理工学研究科   生命医科学専攻  

  • 2008年
    -
    2010年

    北京大学大学院   薬学研究科   薬物化学専攻  

    State Key Laboratory of Natural and Biomimetic Drugs

  • 2004年
    -
    2008年

    北京大学医学部   薬学院  

学位 【 表示 / 非表示

  • 博士(理学)

経歴 【 表示 / 非表示

  • 2018年
    -
    継続中

    早稲田大学理工学術院総合研究所   次席研究員(研究院講師)

  • 2014年
    -
    2018年

    早稲田大学ナノ・ライフ創新研究機構   次席研究員

  • 2015年
    -
     

    University of Bonn   The Life & Medical Sciences Institute, Institute of Innate Immunity   客員研究員

所属学協会 【 表示 / 非表示

  • 2019年
    -
    継続中

    日本バイオマテリアル学会

  • 2012年
    -
    2015年

    American Chemical Society

 

研究分野 【 表示 / 非表示

  • 生体材料学

論文 【 表示 / 非表示

  • Ultra-Thin Porous PDLLA Films Promote Generation, Maintenance, and Viability of Stem Cell Spheroids

    Ya An Tsai, Tianshu Li, Lucia A. Torres-Fernández, Stefan C. Weise, Waldemar Kolanus, Shinji Takeoka

    Frontiers in Bioengineering and Biotechnology   9  2021年06月  [査読有り]

     概要を見る

    Three-dimensional (3D) culture bridges and minimizes the gap between <italic>in vitro</italic> and <italic>in vivo</italic> states of cells and various 3D culture systems have been developed according to different approaches. However, most of these approaches are either complicated to operate, or costive to scale up. Therefore, a simple method for stem cell spheroid formation and preservation was proposed using poly(D,<sc>L</sc>-lactic acid) porous thin film (porous nanosheet), which were fabricated by a roll-to-roll gravure coating method combining a solvent etching process. The obtained porous nanosheet was less than 200 nm in thickness and had an average pore area of 6.6 μm2 with a porosity of 0.887. It offered a semi-adhesive surface for stem cells to form spheroids and maintained the average spheroid diameter below 100 μm for 5 days. In comparison to the spheroids formed in suspension culture, the porous nanosheets improved cell viability and cell division rate, suggesting the better feasibility to be applied as 3D culture scaffolds.

    DOI

  • Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy

    Eugenio Redolfi Riva, Edoardo Sinibaldi, Agostina Francesca Grillone, Serena Del Turco, Alessio Mondini, Tianshu Li, Shinji Takeoka, Virgilio Mattoli

    Nanomaterials   10 ( 11 ) 2104  2020年10月  [査読有り]

    DOI

  • NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells

    Tianshu Li, Matthias Zehner, Jieyan He, Tomasz Próchnicki, Gabor Horvath, Eicke Latz, Sven Burgdorf, Shinji Takeoka

    International Journal of Nanomedicine   14   3503 - 3516  2019年05月  [査読有り]

    DOI

  • Membrane fusogenic lysine type lipid assemblies possess enhanced NLRP3 inflammasome activation potency

    Jieyan He, Tianshu Li, Tomasz Próchnicki, Gabor Horvath, Eicke Latz, Shinji Takeoka

    Biochemistry and Biophysics Reports   18   100623 - 100623.  2019年04月  [査読有り]

    DOI

  • Lysine-containing cationic liposomes activate the NLRP3 inflammasome: Effect of a spacer between the head group and the hydrophobic moieties of the lipids

    Tianshu Li, Jieyan He, Gabor Horvath, Tomasz Próchnicki, Eicke Latz, Shinji Takeoka

    Nanomedicine: Nanotechnology, Biology, and Medicine   14 ( 2 ) 279 - 288  2018年02月

     概要を見る

    Cationic lipids containing lysine head groups and ditetradecyl, dihexadecyl or dioctadecyl glutamate hydrophobic moieties with/without propyl, pentyl or heptyl spacers were applied for the preparation of cationic liposomes using a simple bath type-sonicator. The size distribution, zeta potential, cellular internalization, and cytotoxicity of the liposomes were characterized, and the innate immune stimulation, e.g., the NLRP3 inflammasome activation of human macrophages and THP-1 cells, was evaluated by the detection of IL-1β release. Comparatively, L3C14 and L5C14 liposomes, made from the lipids bearing lysine head groups, ditetradecyl hydrophobic chains and propyl or pentyl spacers, respectively, were the most potent to activate the NLRP3 inflammasome. The possible mechanism includes endocytosis of the cationic liposomes and subsequent lysosome rupture without significant inducement of reactive oxygen species production. In summary, we first disclosed the structural effect of cationic liposomes on the NLRP3 inflammasome activation, which gives an insight into the application of nanoparticles for improved immune response.

    DOI

全件表示 >>

書籍等出版物 【 表示 / 非表示

共同研究・競争的資金等の研究課題 【 表示 / 非表示

  • サイトゾルデリバリーに特化したゲノム編集用ナノ粒子の構築

    研究期間:

    2019年04月
    -
    2022年03月
     

     概要を見る

    核酸医薬品やゲノム編集による遺伝子治療か注目されているが、細胞内で十分に機能させるためには優れたサイトゾル運搬効率を持つ運搬体の開発が必要である。本研究では、膜融合性が高いカチオン性アミノ酸型脂質と核酸を混合してサイトゾルドラッグデリバリーシステムを新たに開発する。そして、ケノム編集に向けた核酸/脂質複合ナノ粒子について、分子や分子集合体の構造が細胞内でのケノム編集活性に及ぼす影響について明らかにする。Cationic liposomes are capable to carry nucleic acids to enhance their cellular uptake. Lipid structure determines the interaction of liposomes with cells, which subsequently affects the performance of cargoes. In 2019 fiscal year, several types of arginine- and lysine-based cationic liposomes were prepared and studied for their cellular uptake route and efficiency, membrane fusogenic potency or cytosolic release, as well as their immunoactivities in THP-1 cells, Jurkat cells or HeLa cells. It has been confirmed that regardless of the head group, the spacer and hydrophobic chains of the lipids greatly affected the cellular interaction of the liposomes. The key factor of lipid that is crucial for regulating the cell entry route of liposomes is still under investigation.As planned, through the study of membrane fusogenic potency of a series of cationic liposomes in various types of cells, the lipids that largely promote liposome fusion with plasma membrane have been identified.The selected lipids will be synthesized and used to fabricate with nucleic acids into lipid nanoparticles (LNPs). Other components such as cholesterol and PEG-lipids may also be involved for efficient cargo loading. The preparation conditions such as the lipid composition and concentration, cationic lipid/nucleic acid (N/P) ratio, and buffer components will be studied to regulate the physical properties of LNPs, including size, zeta potential, stability and recovery rate of nucleic acids. Moreover, the intracellular trafficking will be investigated by labeling the lipids and/or nucleic acids with fluorescent probes to evaluate the cellular uptake efficiency, membrane fusogenic potency or cytosolic release

 

現在担当している科目 【 表示 / 非表示

全件表示 >>

担当経験のある科目(授業) 【 表示 / 非表示

  • Current Topics in Biosciences

    2018年
    -
    継続中
     

  • Fundamental Bioscience Laboratory

    2018年
    -
    継続中
     

  • Science and Engineering Laboratory

    2018年
    -
    継続中
     

  • Molecular Cell Biology

    2018年
    -
    継続中
     

  • Chemistry and Bioscience Laboratory

    2018年
    -
    2019年