Updated on 2023/02/06

写真a

 
SAKAI, Motomu
 
Scopus Paper Info  
Paper Count: 0  Citation Count: 0  h-index: 6

Citation count denotes the number of citations in papers published for a particular year.

Affiliation
Research Council (Research Organization), Research Organization for Nano & Life Innovation
Job title
Junior Researcher(Assistant Professor)

Research Institute

  • 2022
    -
    2024

    Research Organization for Open Innovation Strategy   Concurrent Researcher

Professional Memberships

  •  
     
     

    The Japan Society on Adsorption

  •  
     
     

    THE JAPAN PETROLEUM INSTITUTE

  •  
     
     

    THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN

  •  
     
     

    Japan Association of Zeolite

  •  
     
     

    THE MEMBRANE SOCIETY OF JAPAN

 

Research Areas

  • Inorganic compounds and inorganic materials chemistry   zeolite

Research Interests

  • 吸着

  • Metal Organic Frameworks

  • Zeolite synthesis

  • Membrane separation

Papers

  • Alkaline-treatment with pore-filling agent for defect-healing of zeolite membrane

    Motomu Sakai, Hayata Hori, Masahiko Matsukata

    Microporous and Mesoporous Materials   336  2022.05  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    Defects in silicalite-1 membrane is readily healed by an alkaline-treatment in aqueous solutions of NaOH and organic additives such as cetyltrimethylammonium bromide (CTAB) and tetramethylammonium bromide (TMABr). In this study, we investigated the role of organic additive in the course of alkaline-treatment. From the evaluation of weight and micropore volume of silicalite-1, it was shown that 3.6 and 3.1 molecules per unit cell of CTA+ and TMA+ entered the micropore of silicalite-1 during the treatment. CTA+ or TMA+ locating in the micropore inhibited the diffusion of NaOH into the micropore of zeolite and suppressed the dissolution from the inside of crystal. In contrast, the defect in silicalite-1 membrane was not healed by using an aqueous solution of NaOH and tetrabutylammonium bromide (TMABr), which was not able to enter the micropore of silicalite-1. We concluded that the use of organic additives, which can enter the micropore, was important for the defect-healing of siliclaite-1 membrane by the alkaline-treatment.

    DOI

    Scopus

    1
    Citation
    (Scopus)
  • Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part II, Diffusivity of C6 Hydrocarbon in Micropore.

    Motomu Sakai, Yukichi Sasaki, Takuya Kaneko, Masahiko Matsukata

    Membranes   11 ( 6 )  2021.05  [Refereed]  [International journal]

    Authorship:Lead author, Corresponding author

     View Summary

    This study investigated the permeation behaviors of n-hexane and 2-methylpentane through two-types of silicalite-1 membranes that have different pore-connectivity. The permeation mechanisms of these hydrocarbons were able to be explained by the adsorption-diffusion model. In addition, the fluxes through silicalite-1 membranes could be expressed by the modified Fick's first law. The hydrocarbon fluxes through S-1S with better pore-connectivity were ca. 3-20 times larger than those through S-1M with poor pore-connectivity. For these membranes with different pore-connectivity, the activation energy of diffusion of n-hexane was 17.5 kJ mol-1 for the membrane with better pore-connectivity and 18.0 kJ mol-1 for the membrane with poorer pore-connectivity, whereas for 2-methylpentane it was 17.9 and 33.0 kJ mol-1, respectively. We concluded that the pore-connectivity in silicalite-1 membrane significantly influences the molecular diffusivities.

    DOI PubMed

    Scopus

    3
    Citation
    (Scopus)
  • Contribution of Pore-Connectivity to Permeation Performance of Silicalite-1 Membrane; Part I, Pore Volume and Effective Pore Size.

    Motomu Sakai, Yukichi Sasaki, Takuya Kaneko, Masahiko Matsukata

    Membranes   11 ( 6 ) 399 - 399  2021.05  [Refereed]  [International journal]

    Authorship:Lead author, Corresponding author

     View Summary

    The micropore volumes and effective pore sizes of two types of silicalite-1 membranes were compared with those of a typical silicalite-1 powder. The silicalite-1 membrane with fewer grain boundaries in the membrane layer showed similar micropore volume and effective pores size to those of the silicalite-1 powder. In contrast, when the silicalite-1 membrane contained many grain boundaries, relatively small micropore volume and effective pore size were observed, suggesting that narrowing and obstruction of the micropore would occur along grain boundaries due to the disconnection of the zeolite pore. The silicalite-1 membrane with fewer grain boundaries exhibited relatively high permeation properties for C6-C8 hydrocarbons. There was an over 50-fold difference in benzene permeance between these two types of membranes. We concluded that it is important to reduce grain boundaries and improve pore-connectivity to develop an effective preparation method for obtaining a highly permeable membrane.

    DOI PubMed

    Scopus

    6
    Citation
    (Scopus)
  • Self-defect-healing of silicalite-1 membrane in alkaline aqueous solution with surfactant

    Motomu Sakai, Hayata Hori, Masahiko Matsukata

    MATERIALS ADVANCES    2021.05  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    Alkaline treatment with surfactant was applied to silicalite-1 membrane for defect healing. By immersion of silicalite-1 membrane into an aqueous solution of sodium hydroxide and cetyltrimethylammonium bromide (CTAB), defects among crystals were sealed, with amorphous silica leached from the membrane itself. During the treatment, the zeolite pores in the membrane were protected by CTAB from excess alkaline etching. As a result, the separation performance of silicalite-1 membrane was successfully improved by this post-treatment without a decrease in permeability due to the collaborative effect of NaOH and CTAB. The separation factor for n-hexane/2,3-dimethylbutane mixture increased from 86.5 to 559 after only a 15 min treatment. In addition, the separation performances of other zeolite membranes (Na-*BEA, Na-ZSM-5, and Na-MOR) were also improved by the treatment. This novel defect-healing technique breaks the trade-off line of permeation and separation performance observed with previous post-treatments.

    DOI

    Scopus

    1
    Citation
    (Scopus)
  • Olefin Recovery by *BEA‐Type Zeolite Membrane: Affinity‐Based Separation with Olefin−Ag + Interaction

    Motomu Sakai, Yuto Tsuzuki, Naoyuki Fujimaki, Masahiko Matsukata

    Chemistry – An Asian Journal    2021.03  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

    Scopus

    3
    Citation
    (Scopus)
  • Formation Process of Columnar Grown (101)-Oriented Silicalite-1 Membrane and Its Separation Property for Xylene Isomer

    Motomu Sakai, Takuya Kaneko, Yukichi Sasaki, Miyuki Sekigawa, Masahiko Matsukata

    Crystals   10 ( 10 ) 949 - 949  2020.10  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Silicalite-1 membrane was prepared on an outer surface of a tubular α-alumina support by a secondary growth method. Changes of defect amount and crystallinity during secondary growth were carefully observed. The defect-less well-crystallized silicalite-1 membrane was obtained after 7-days crystallization at 373 K. The silicalite-1 membrane became (h0l)-orientation with increasing membrane thickness, possibly because the orientation was attributable to “evolutionally selection”. The (h0l)-oriented silicalite-1 membrane showed high p-xylene separation performance for a xylene isomer mixture (o-/m-/p-xylene = 0.4/0.4/0.4 kPa). The p-xylene permeance through the membrane was 6.52 × 10−8 mol m−2 s−1 Pa−1 with separation factors αp/o, αp/m of more than 100 at 373 K. As a result of microscopic analysis, it was suggested that a very thin part in the vicinity of surface played as effective separation layer and could contribute to high permeation performance.

    DOI

    Scopus

    8
    Citation
    (Scopus)
  • Preferential Adsorption of Propylene over Propane on a Ag-Exchanged X-Type Zeolite Membrane

    Motomu Sakai, Naoyuki Fujimaki, Yasuhito Sasaki, Noriyuki Yasuda, Masahiro Seshimo, Masahiko Matsukata

    ACS applied materials & interfaces   12 ( 21 ) 24086 - 24092  2020.05  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    We investigated the adsorption properties of propylene and propane on an olefin-selective Ag-X membrane and discussed the contribution of adsorption selectivity to propylene/propane separation performance through this membrane. The isotherms of propylene and propane on Ag-X membranes were measured in unary systems at 313 K. The amount of propylene adsorbed on the Ag-X membrane at a lower pressure increased remarkably compared with that on the Na-X membrane. Such a change of adsorption property could induce excellent separation property for the Ag-X membrane. We compared the adsorption properties in a binary system calculated based on the Markham-Benton approach with the results of a permeation test. The molar fractions of propylene in the adsorbed phase in the binary system provided good agreement with propylene purity on the permeation side of the Ag-X membrane. These results clearly show that permeation selectivity of the Ag-X membrane for the propylene/propane mixture is mainly governed by adsorption selectivity.

    DOI PubMed

    Scopus

    11
    Citation
    (Scopus)
  • Formation process of *BEA-type zeolite membrane under OSDA-free conditions and its separation property

    Motomu Sakai, Naoyuki Fujimaki, Genki Kobayashi, Noriyuki Yasuda, Yoshikazu Oshima, Masahiro Seshimo, Masahiko Matsukata

    Microporous and Mesoporous Materials   284   360 - 365  2019.08  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    © 2019 The Authors Tubular zeolite *BEA membrane was prepared by a hydrothermal secondary growth method in the absence of an organic structure directing agent (OSDA). Membrane formation process was carefully observed by using FE-SEM, XRD, and N2 adsorption, and the role of seed crystals on the support surface was discussed. Seed crystals loaded on the outer surface of a tubular porous alumina support partially dissolved and a small amount of seeds remained in an amorphous layer formed on the support surface in the early stage of secondary growth step. Subsequently, crystal growth of remaining crystals occurred, and a continuous *BEA layer was obtained following crystallization for 7 days at 393 K. In the secondary growth step, the supported seed layer played an important role in inducing the formation of a high local concentration in the vicinity of the support surface. The prepared OSDA-free *BEA membrane was then applied in the separation of hydrocarbons. We found that this membrane contained very few defects, and exhibited a high ideal selectivity for cyclohexane/1,3,5-trimethylbenzene mixture of 100, with cyclohexane permeance of 1.0 × 10−7 mol m−2 s−1 Pa−1 based on molecular sieving effect at 623 K.

    DOI

    Scopus

    11
    Citation
    (Scopus)
  • Olefin Selective Ag-Exchanged X-Type Zeolite Membrane for Propylene/Propane and Ethylene/Ethane Separation

    Motomu Sakai, Yasuhito Sasaki, Taisuke Tomono, Masahiro Seshimo, Masahiko Matsukata

    ACS Applied Materials and Interfaces   11 ( 4 ) 4145 - 4151  2019.01  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    © 2019 American Chemical Society. Propylene/propane and ethylene/ethane separation was examined with Ag-exchanged X-type zeolite membrane (Ag-X membrane). The Na-X membrane was prepared on a porous tubular α-alumina support by a secondary growth method. The resulting Na-X membrane was ion-exchanged by using AgNO 3 aq. Olefin selectivities in both mixtures were markedly improved after the ion exchange from Na to Ag cation. The Ag-X membrane exhibited a maximum propylene selectivity of 55.4 with a permeance of 4.13 × 10 -8 mol m -2 s -1 Pa -1 at 353 K for a propylene/propane (50:50) mixture. This membrane also exhibited a maximum ethylene selectivity of 15.9 with a permeance of 9.04 × 10 -8 mol m -2 s -1 Pa -1 at 303 K for an ethylene/ethane (50:50) mixture. We consider that the strong interaction between olefin and Ag cation plays an important role for the appearance of such high selectivity of olefin.

    DOI PubMed

    Scopus

    51
    Citation
    (Scopus)
  • Hydrophilic ZSM-5 membrane for forward osmosis operation

    Sakai, M., Seshimo, M., Matsukata, M.

    Journal of Water Process Engineering   32  2019  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

    Scopus

    13
    Citation
    (Scopus)
  • Esterification of Acetic Acid by Flow-Type Membrane Reactor with AEI Zeolite Membrane

    Yuma Sekine, Motomu Sakai, Masahiko Matsukata

    Membranes    2023.01  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

    Scopus

  • An Experimental Study of a Zeolite Membrane Reactor for Reverse Water Gas Shift

    Motomu Sakai, Kyoka Tanaka, Masahiko Matsukata

    Membranes    2022.12  [Refereed]

    Authorship:Lead author, Corresponding author

    DOI

    Scopus

  • Impact of process configuration on energy consumption and membrane area in hybrid separation process using olefin-selective zeolite membrane

    Takehiro Yamaki, Motomu Sakai, Masahiko Matsukata, Susumu Tsutsuminai, Naoyuki Sakamoto, Nobuo Toratani, Sho Kataoka

    Separation and Purification Technology   294   121208 - 121208  2022.08  [Refereed]

    DOI

    Scopus

  • Ultrapermeable 2D-channeled graphene-wrapped zeolite molecular sieving membranes for hydrogen separation

    Radovan Kukobat, Motomu Sakai, Hideki Tanaka, Hayato Otsuka, Fernando Vallejos-Burgos, Christian Lastoskie, Masahiko Matsukata, Yukichi Sasaki, Kaname Yoshida, Takuya Hayashi, Katsumi Kaneko

    Science Advances    2022.05  [Refereed]

    DOI

    Scopus

    3
    Citation
    (Scopus)
  • Apatite–Graphene Interface Channel-Aided Rapid and Selective H2 Permeation

    Radovan Kukobat, Motomu Sakai, Ayumi Furuse, Hayato Otsuka, Hideki Tanaka, Takuya Hayashi, Masahiko Matsukata, Katsumi Kaneko

    The Journal of Physical Chemistry C    2022.02  [Refereed]

    DOI

    Scopus

  • Synthesis of FAU-Zeolite Membrane by a Secondary Growth Method: Influence of Seeding on Membrane Growth and Its Performance in the Dehydration of Isopropyl Alcohol–Water Mixture

    Masahiko Matsukata, Yasushi Sekine, Eiichi Kikuchi, Motomu Sakai, Bharathi Subramanian, Makoto Toyoda, Taisuke Furuhata

    ACS Omega   6 ( 14 ) 9834 - 9842  2021.03  [Refereed]

     View Summary

    Y-type zeolite membranes were prepared on a porous tubular α-alumina support by a secondary growth process. Various experimental conditions such as seed size, pH of seed solution, and degassing of support were examined for understanding their influence on the membrane deposition process. The experimental results showed that the potential of alumina support surface and the USY seed slurry plays a significant role in controlling the electrostatic interaction between seed particles and support surface and also the aggregation of USY seed particles in the slurry. In addition, we also noted the significance of the capillary forces working at the three-phase interface on the support surface and is a key factor that governs the seeding behavior onto the tubular support surface. Optimization of these parameters resulted in crack-free compact membranes that were able to effectively separate a mixture of isopropyl alcohol and water in a vapor-phase separation process.

    DOI

    Scopus

    1
    Citation
    (Scopus)
  • Adsorption separation of heavier isotope gases in subnanometer carbon pores

    Sanjeev Kumar Ujjain, Abhishek Bagusetty, Yuki Matsuda, Hideki Tanaka, Preety Ahuja, Carla de Tomas, Motomu Sakai, Fernando Vallejos-Burgos, Ryusuke Futamura, Irene Suarez-Martinez, Masahiko Matsukata, Akio Kodama, Giovanni Garberoglio, Yury Gogotsi, J. Karl Johnson, Katsumi Kaneko

    Nature Communications   12 ( 1 )  2020.12  [Refereed]

     View Summary

    <title>Abstract</title>Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (<italic>S</italic>) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18O2 from 16O2 with <italic>S</italic> above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18O2 and 16O2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.

    DOI

    Scopus

    12
    Citation
    (Scopus)
  • Organic structure-directing agent-free synthesis for *Bea-type zeolite membrane

    Motomu Sakai, Noriyuki Yasuda, Yuto Tsuzuki, Masahiko Matsukata

    Journal of Visualized Experiments   2020 ( 156 )  2020.02  [Refereed]

    Authorship:Lead author, Corresponding author

     View Summary

    © 2020 Journal of Visualized Experiments. Membrane separation has drawn attention as a novel-energy saving separation process. Zeolite membranes have great potential for hydrocarbon separation in petroleum and petrochemical fields because of their high thermal, chemical, and mechanical strength. A *BEA-type zeolite is an interesting membrane material because of its large pore size and wide Si/Al range. This manuscript presents a protocol for *BEA membrane preparation by a secondary growth method that does not use an organic structure-directing agent (OSDA). The preparation protocol consists of four steps: pretreatment of support, seed preparation, dip-coating, and membrane crystallization. First, the *BEA seed crystal is prepared by conventional hydrothermal synthesis using OSDA. The synthesized seed crystal is loaded on the outer surface of a 3 cm long tubular α-Al2O3 support by a dip-coating method. The loaded seed layer is prepared with the secondary growth method using a hydrothermal treatment at 393 K for 7 days without using OSDA. A *BEA membrane having very few defects is successfully obtained. The seed preparation and dip-coating steps strongly affect the membrane quality.

    DOI PubMed

    Scopus

    1
    Citation
    (Scopus)
  • Unique enhanced catalytic performance of PtFe/zeolite

    Matsukata Masahiko, Ushiki Ryosuke, Sakai Motomu

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY   257  2019.03  [Refereed]

  • CO2 coversion to MeOH with membrane reactor using zeolite membrane

    Matsukata Masahiko, Yoshida Daiki, Sakai Motomu, Seshimo Masahiro

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY   256  2018.08  [Refereed]

  • Strong adsorption of propylene helps propane/propylene separation through Ag plus -exchanged X-type zeolite membrane

    Sakai Motomu, Sasaki Yasuhito, Matsukata Masahiko

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY   255  2018.03  [Refereed]

    Authorship:Lead author

▼display all

Books and Other Publications

  • 水処理分離膜の開発最前線

    酒井求, 松方正彦( Part: Contributor, 3章-5 親水性ゼオライト膜によるアルコールや有機酸からの脱水)

    株式会社シーエムシー出版  2020.12

  • 化学工業第71巻第3号

    酒井求, 松方正彦( Part: Contributor, ホージャサイト型ゼオライト膜によるオレフィンの分離精製)

    株式会社化学工業社  2020.03

  • 2020年版薄膜作製応用ハンドブック

    松方正彦, 酒井求( Part: Contributor, 6章8節ゼオライト分離膜)

    株式会社エヌティーエス  2020.02

  • Research Outreach

    Motomu Sakai, Masahiko Matsukata( Part: Contributor, Zeolite membranes for chemical separation)

    Research Outreach  2019.12

  • 化学工学83巻12号

    松方正彦, 酒井求( Part: Contributor, ゼオライト分離膜を用いた新規分離技術の開拓)

    公益社団法人化学工学会  2019.12

  • セラミックデータブック 2019

    酒井求, 松方正彦( Part: Contributor, 超空間制御に基づく高度な特性を有する革新的機能素材の創製-ゼオライト系分離膜開発)

    株式会社テクノプラザ  2019.12

  • 先進無機高分子材料の開発

    酒井 求( Part: Contributor, 2章-2 無機膜による炭化水素分離)

    シーエムシー出版  2016

▼display all

Misc

▼display all

Industrial Property Rights

▼display all

Awards

  • Best poster award

    2021.07   Federation of European Zeolite Associations   Flow membrane reactor for the esterification of acetic acid using MOR-type zeolite membrane

    Winner: Motomu SAKAI

  • Encouragement Award

    2020.03  

    Winner: Motomu SAKAI

  • GSCポスター賞

    2013.03   公益社団法人 新化学技術推進協会   silicalite-1膜を用いたC6炭化水素蒸気透過分離

    Winner: 酒井 求

  • JXエネルギー優秀研究賞

    2013.03   JX日鉱日石エネルギー株式会社   ゼオライト膜を用いた炭化水素分離

    Winner: 酒井 求

Research Projects

  • Development on zeolite membrane with precise control of the location of cation

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Project Year :

    2022.04
    -
    2024.03
     

Presentations

  • ゼオライト膜を用いた膜反応器開発とその課題

    酒井 求  [Invited]

    第18回反好会講演会 

    Presentation date: 2019.03

  • 親和性の違いに基づくゼオライト膜による炭化水素分離

    酒井 求  [Invited]

    化学工学会第83年会 

    Presentation date: 2018.03

  • エチレン・プロピレン分離用ゼオライト膜の開発

    酒井 求  [Invited]

    化学工学会第82年会 

    Presentation date: 2017.03

Specific Research

  • 新規ゼオライト膜の合成法およびその透過分離特性の検討

    2014  

     View Summary

     本研究では、分離プロセスの省エネルギー化に資する材料として新規ゼオライト膜の開発を行った。既報に従い新規ゼオライト粉末の合成を行い、その耐酸性について試験を行った。その結果、新規ゼオライトは非常に高い耐酸性を有することが明らかとなった。次に、調製条件(結晶化温度、結晶化時間、合成液組成)を鋭意検討し、新規ゼオライトを多孔質アルミナ支持体上へ薄膜化した。得られた新規ゼオライト膜はアルコールから水を選択的に分離することが可能であった。今後は酸からの脱水やガス分離(窒素/酸素, 窒素/二酸化炭素)にも応用する予定である。

 

Committee Memberships

  • 2021.04
    -
    Now

    公益社団法人石油学会  石油学会誌”ペトロテック”編集委員