Updated on 2024/03/28

写真a

 
MOTZ, Holger Martin
 
Affiliation
Faculty of Science and Engineering, Global Center for Science and Engineering
Job title
Professor(non-tenure-track)
Degree
Dr. rer. nat. ( Friedrich-Alexander Universität Erlangen-Nürnberg )

Research Experience

  • 2023.10
    -
    Now

    Waseda University   Faculty of Science and Engineering, Global Center for Science and Engineering   Professor (without tenure)

  • 2023.04
    -
    2023.09

    Kanagawa University   Faculty of Engineering   Project Researcher

  • 2018.04
    -
    2023.03

    Waseda University   Faculty of Science and Engineering, Global Center for Science and Engineering   Associate Professor (without tenure)

  • 2014.04
    -
    2018.03

    Waseda University   International Center for Science and Engineering Programs   Assistant Professor

  • 2013.06
    -
    2014.03

    Waseda University   Research Institute for Science and Engineering   Junior Researcher

  • 2013.04
    -
    2013.05

    Waseda University   Research Institute for Science and Engineering   Research Assistant

  • 2012.04
    -
    2013.03

    The University of Tokyo   Institute for Cosmic Ray Research   Project Researcher

  • 2006.01
    -
    2012.03

    Friedrich-Alexander Universität Erlangen-Nürnberg   Chair of Experimental Physics (Particle and Astro Particle Physics)   Research Assistant

▼display all

Education Background

  • 2006.01
    -
    2011.11

    Friedrich-Alexander-Universität Erlangen-Nürnberg   Faculty of Science   Physics, Graduate Study  

  • 2000.09
    -
    2005.12

    Friedrich-Alexander Universität Erlangen-Nürnberg   Faculty of Science   Physics  

Professional Memberships

  •  
     
     

    Deutsche Physikalische Gesellschaft

  •  
     
     

    The Physical Society of Japan

Research Areas

  • Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics / Experimental studies related to particle-, nuclear-, cosmic ray and astro-physics
 

Papers

  • Direct Measurement of the Spectral Structure of Cosmic-Ray Electrons+Positrons in the TeV Region with CALET on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical Review Letters   131 ( 19 )  2023.11  [Refereed]

    Authorship:Corresponding author

    DOI

  • Erratum: Charge-Sign Dependent Cosmic-Ray Modulation Observed with the Calorimetric Electron Telescope on the International Space Station [Phys. Rev. Lett. 130, 211001 (2023)

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. de Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical review letters   131 ( 10 ) 109902  2023.09

     View Summary

    This corrects the article DOI: 10.1103/PhysRevLett.130.211001.

    DOI PubMed

    Scopus

  • Cosmic-Ray Modulation during Solar Cycles 24-25 Transition Observed with CALET on the International Space Station

    Shoko Miyake, Oscar Adriani, Katsuaki Asano, Yoichi Aaoka, Eugenio Berti, Gabriele Bigongiari, Walter Robert Binns, Massimo Bongi, Paolo Brogi, Alessandro Bruno, Nicholas Wade Cannady, Guide Castellini, Caterina Checchia, Walter Robert Cherry, Gianmaria Collazuol, Georgia A. de Nolfo, Ken Ebisawa, Anthony W. Ficklin, Hideyuki Fuke, Sandro Gonzi, T. Gregory Guzik, Thomas Hams, Kinya Hibino, Masakatsu Ichimura, Kunihito Ioka, Wataru Ishizaki, Martin H. Israel, Katsumasa Kasahara, Jun Kataoka, Ryuho Kataoka, Yusaku Katayose, Chihiro Kato, Norita Kawanaka, Yuta Kawakubo, Kenko Kobayashi, Kazunori Kohri, Henric S. Krawczynski, John F. Krizmanic, Paolo Maestro, Pier Simone Marrocchesi, Alberto Maria Messineo, Jason W. Mitchell, Alexander Moiseev, Masaki Mori, Nicola Mori, Holger Martin Motz, Satoshi Nakahira, Jun Nishimura, Shoji Okuno, Jonathan Ormes, Shunsuke OZAWA, Lorenzo Pacini, Paolo Pacini, Brian Flint Rauch, Ricciarini Ricciarini, Kazuhiro Sakai, Takanori Sakamoto, Makoto Sasaki, Yuki Shimizu, Atsushi Shiomi, Piero Spillantini, Francesco Stolzi, Satoshi Sugita, Arta Sulaj, Masato Takita, Tadahisa Tamura, Toshio Terasawa, Shoji Torii, Yoshiki Tsunesada, Yukio Uchihori, Elena Vannuccini, John P. Wefel, Kazutaka Yamaoka, Shohei Yanagita, Atsumasa Yoshida, Kenji Yoshida, Wolfgang V Zober, Kazuoki Munakata, Yosui Akaike

    Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023)    2023.08

    DOI

  • Dark Matter Limits from the CALET Electron+Positron Spectrum with Individual Astrophysical Source Background

    H. Motz, O. Adriani, Y. Akaike, K. Asano, Y. Aaoka, E. Berti, G. Bigongiari, W.R. Binns, M. Bongi, P. Brogi, A. Bruno, N.W. Cannady, G. Castellini, C. Checchia, W.R. Cherry, G. Collazuol, G.A. de Nolfo, K. Ebisawa, A.W. Ficklin, H. Fuke, S. Gonzi, T.G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M.H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H.S. Krawczynski, J.F. Krizmanic, P. Maestro, P.S. Marrocchesi, A.M. Messineo, J.W. Mitchell, S. Miyake, A. Moiseev, M. Mori, N. Mori, H.M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. Ormes, S. Ozawa, L. Pacini, P. Pacini, B.F. Rauch, R. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J.P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W.V. Zober

    Proceedings of Science, 38th International Cosmic Ray Conference   Volume 444 ( 1385 )  2023.08

    Authorship:Lead author, Corresponding author

    DOI

  • A Cosmic-Ray Propagation Model based on Measured Nuclei Spectra

    H. Motz

    Proceedings of Science, 38th International Cosmic Ray Conference   Volume 444 ( 068 )  2023.08

    DOI

  • Interpretation of the CALET Electron+Positron Spectrum by Astrophysical Sources

    H. Motz, O. Adriani, Y. Akaike, K. Asano, Y. Aaoka, E. Berti, G. Bigongiari, W.R. Binns, M. Bongi, P. Brogi, A. Bruno, N.W. Cannady, G. Castellini, C. Checchia, W.R. Cherry, G. Collazuol, G.A. de Nolfo, K. Ebisawa, A.W. Ficklin, H. Fuke, S. Gonzi, T.G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M.H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H.S. Krawczynski, J.F. Krizmanic, P. Maestro, P.S. Marrocchesi, A.M. Messineo, J.W. Mitchell, S. Miyake, A. Moiseev, M. Mori, N. Mori, H.M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. Ormes, S. Ozawa, L. Pacini, P. Pacini, B.F. Rauch, R. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J.P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W.V. Zober

    Proceedings of Science, 38th International Cosmic Ray Conference   Volume 444 ( 067 )  2023.08

    Authorship:Lead author, Corresponding author

    DOI

  • Constraints on heavy dark matter annihilation and decay from electron and positron cosmic ray spectra

    Holger Motz

    SciPost Physics Proceedings   ( 12 )  2023.07  [Refereed]

     View Summary

    Annihilation or decay of dark matter (DM) could contribute to the electron and positron cosmic-ray flux, allowing for constraints on DM parameters from its measurement. CALET is directly measuring the energy spectrum of electron+positron cosmic rays up into the TeV region most important for studying heavy DM, while AMS-02 provides a positron-only spectrum below the TeV range. Limits on DM annihilation and decay well into the TeV mass range have been derived from a combined analysis of both data-sets with an astrophysical background model including pulsars as the origin of the positron excess and individual nearby supernova remnant sources.

    DOI

  • Charge-Sign Dependent Cosmic-Ray Modulation Observed with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. De Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical Review Letters   130 ( 21 )  2023.05  [Refereed]

     View Summary

    We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model"of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.

    DOI PubMed

    Scopus

  • Direct Measurement of the Cosmic-Ray Helium Spectrum from 40 GeV to 250 TeV with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. De Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical Review Letters   130 ( 17 )  2023.04  [Refereed]

     View Summary

    We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit. The measured spectrum shows evidence of a deviation of the flux from a single power law by more than 8σ with a progressive spectral hardening from a few hundred GeV to a few tens of TeV. This result is consistent with the data reported by space instruments including PAMELA, AMS-02, and DAMPE and balloon instruments including CREAM. At higher energy we report the onset of a softening of the helium spectrum around 30 TeV (total kinetic energy). Though affected by large uncertainties in the highest energy bins, the observation of a flux reduction turns out to be consistent with the most recent results of DAMPE. A double broken power law is found to fit simultaneously both spectral features: the hardening (at lower energy) and the softening (at higher energy). A measurement of the proton to helium flux ratio in the energy range from 60 GeV/n to about 60 TeV/n is also presented, using the CALET proton flux recently updated with higher statistics.

    DOI PubMed

    Scopus

    4
    Citation
    (Scopus)
  • Cosmic-Ray Boron Flux Measured from 8.4 GeV/n to 3.8 TeV/n with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, G. A. De Nolfo, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical Review Letters   129 ( 25 )  2022.12  [Refereed]

     View Summary

    We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E0∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25<E<200 GeV/n. The B spectrum hardens by ΔγB=0.25±0.12, while the best fit value for the spectral variation of C is ΔγC=0.19±0.03. The B/C flux ratio is compatible with a hardening of 0.09±0.05, though a single power-law energy dependence cannot be ruled out given the current statistical uncertainties. A break in the B/C ratio energy dependence would support the recent AMS-02 observations that secondary cosmic rays exhibit a stronger hardening than primary ones. We also perform a fit to the B/C ratio with a leaky-box model of the cosmic-ray propagation in the Galaxy in order to probe a possible residual value λ0 of the mean escape path length λ at high energy. We find that our B/C data are compatible with a nonzero value of λ0, which can be interpreted as the column density of matter that cosmic rays cross within the acceleration region.

    DOI PubMed

    Scopus

    9
    Citation
    (Scopus)
  • Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical Review Letters   129 ( 10 )  2022.09  [Refereed]

    DOI

  • CALET Search for Electromagnetic Counterparts of Gravitational Waves during the LIGO/Virgo O3 Run

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    The Astrophysical Journal   933 ( 1 ) 85 - 85  2022.07  [Refereed]

     View Summary

    Abstract

    The CALorimetric Electron Telescope (CALET) on the International Space Station consists of a high-energy cosmic-ray CALorimeter (CAL) and a lower-energy CALET Gamma-ray Burst Monitor (CGBM). CAL is sensitive to electrons up to 20 TeV, cosmic-ray nuclei from Z = 1 through Z ∼ 40, and gamma rays over the range 1 GeV–10 TeV. CGBM observes gamma rays from 7 keV to 20 MeV. The combined CAL-CGBM instrument has conducted a search for gamma-ray bursts (GRBs) since 2015 October. We report here on the results of a search for X-ray/gamma-ray counterparts to gravitational-wave events reported during the LIGO/Virgo observing run O3. No events have been detected that pass all acceptance criteria. We describe the components, performance, and triggering algorithms of the CGBM—the two Hard X-ray Monitors consisting of LaBr3(Ce) scintillators sensitive to 7 keV–1 MeV gamma rays and a Soft Gamma-ray Monitor BGO scintillator sensitive to 40 keV–20 MeV—and the high-energy CAL consisting of a charge detection module, imaging calorimeter, and the fully active total absorption calorimeter. The analysis procedure is described and upper limits to the time-averaged fluxes are presented.

    DOI

    Scopus

    2
    Citation
    (Scopus)
  • CALET on the International Space Station: a precise measurement of the iron spectrum

    O. Adriani, Yosui Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, Caterina Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, Francesco Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Proceedings of Science   398  2022.05

     View Summary

    The Calorimetric Electron Telescope (CALET) was launched on the International Space Station in 2015 and since then has collected a large sample of cosmic-ray charged particles over a wide energy. Thanks to a couple of layers of segmented plastic scintillators placed on top of the detector, the instrument is able to identify the charge of individual elements from proton to iron (and above). The imaging tungsten scintillating fiber calorimeter provides accurate particle tracking and the lead tungstate homogeneous calorimeter can measured the energy with a wide dynamic range. One of the CALET scientific objectives is to measure the energy spectra of cosmic rays to shed light on their acceleration and propagation in the Galaxy. By the observation in first five years, a precise measurement of the iron spectrum is now available in the range of kinetic energy per nucleon from 10 GeV/n to 2 TeV/n. The CALET's result with a description of the analysis and details on systematic uncertainties will be illustrated. Also, a comparison with previous experiments' results is given.

  • Direct Measurement of the Nickel Spectrum in Cosmic Rays in the Energy Range from 8.8 GeV/ n to 240 GeV/ n with CALET on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, A. W. Ficklin, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W. V. Zober

    Physical Review Letters   128 ( 13 )  2022.04  [Refereed]

     View Summary

    The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

    DOI PubMed

    Scopus

    8
    Citation
    (Scopus)
  • Investigating the Vela SNR's Emission of Electron Cosmic Rays with CALET at the International Space Station

    H. Motz, O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W.R. Binns, M. Bongi, P. Brogi, A. Bruno, J.H. Buckley, N. Cannady, G. Castellini, C. Checchia, M.L. Cherry, G. Collazuol, K. Ebisawa, A.W. Ficklin, H. Fuke, S. Gonzi, T.G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M.H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. Krawczynski, J.F. Krizmanic, J. Link, P. Maestro, P.S. Marrocchesi, A.M. Messineo, J.W. Mitchell, S. Miyake, A.A. Moiseev, M. Mori, N. Mori, K. Munakata, S. Nakahira, J. Nishimura, G.A. de Nolfo, S. Okuno, J.F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B.F. Rauch, S.B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J.P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, W.V. Zober

    Proceedings of Science, 37th International Cosmic Ray Conference   Volume 395 ( 100 )  2022.03

    Authorship:Lead author, Corresponding author

    DOI

  • Monte Carlo Study of Electron and Positron Cosmic-Ray Propagation with the CALET Spectrum

    Katsuaki Asano, Yoichi Asaoka, Yosui Akaike, Norita Kawanaka, Kazunori Kohri, Holger M. Motz, Toshio Terasawa

    The Astrophysical Journal   926 ( 1 ) 5 - 5  2022.02

     View Summary

    <title>Abstract</title>
    Focusing on the electron and positron spectrum measured with the Calorimetric Electron Telescope (CALET), which shows characteristic structures, we calculate the flux contributions of cosmic rays that have escaped from randomly appearing supernova remnants. We adopt a Monte Carlo method to take into account the stochastic nature of the appearance of nearby sources. We find that without a complicated energy dependence of the diffusion coefficient, simple power-law diffusion coefficients can produce spectra similar to the CALET spectrum, even with a dispersion in the injection index. The positron component measured with AMS-02 is consistent with a bump-like structure around 300 GeV in the CALET spectrum. One to three nearby supernovae can contribute up to a few tens of percent of the CALET flux at 2–4 TeV, while ten or more unknown and distant (≳500 pc) supernovae account for the remaining several tens of percent of the flux. The CALET spectrum, showing a sharp drop at ∼1 TeV, allows for a contribution of cosmic rays from an extraordinary event that occurred ∼400 kyr ago. This type of event releases electrons/positrons with a total energy more than 10 times the average energy for usual supernovae, and its occurrence rate is lower than one three-hundredth of the usual supernova rate.

    DOI

    Scopus

    3
    Citation
    (Scopus)
  • CALET Observations during the First 5 Years on the ISS

    P. S. Marrocchesi, O. Adriani, Y. Akaike, Y. Asaoka, E. Berti, G. Bigongiari, M. Bongi, P. Brogi, A. Bruno, N. Cannady, C. Checchia, M. L. Cherry, G. Collazuol, A. W. Ficklin, T. G. Guzik, M. Ichimura, M. H. Israel, K. Kasahara, Y. Kawakubo, J. F. Krizmanic, A. M. Messineo, J. W. Mitchell, S. Miyake, M. Mori, N. Mori, H. M. Motz, K. Munakata, L. Pacini, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, T. Sakamoto, M. Sasaki, F. Stolzi, A. Sulaj, T. Tamura, S. Torii, J. P. Wefel, K. Yoshida, W. V. Zober

    Physics of Atomic Nuclei   84 ( 6 ) 985 - 994  2021.11

     View Summary

    The CALorimetric Electron Telescope CALET is collecting science data on the International Space Station since October 2015 with excellent and continuous performance. Energy is measured with a deep homogeneous calorimeter (1.2 nuclear interaction lengths, 27 radiation lengths) preceded by an imaging pre-shower (3 radiation lengths, 1mm granularity) providing tracking and 10-5 electron/proton discrimination. Two independent sub-systems identify the charge Z of the incident particle from proton to iron and above (Z<40). CALET measures the cosmic-ray electron + positron flux up to 20 TeV, gamma rays up to 10 TeV, and nuclei up to the PeV scale. In this paper, we report the on-orbit performance of the instrument and summarize the main results obtained during the first 5 years of operation, including the electron + positron energy spectrum and the individual spectra of protons, heavier nuclei and iron. Solar modulation and gamma-ray observations are also concisely reported, as well as transient phenomena and the search for gravitational wave counterparts.

    DOI

    Scopus

  • Measurement of the Iron Spectrum in Cosmic Rays from 10 GeV/n to 2.0 TeV/n with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, J. Link, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, P. Spillantini, F. Stolzi, S. Sugita, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Physical Review Letters   126 ( 24 )  2021.06

     View Summary

    The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.

    DOI PubMed

    Scopus

    28
    Citation
    (Scopus)
  • Direct Measurement of the Cosmic-Ray Carbon and Oxygen Spectra from 10 GeV/ n to 2.2 TeV/ n with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, K. Ebisawa, H. Fuke, S. Gonzi, T. G. Guzik, T. Hams, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kobayashi, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, J. Link, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, M. Mori, N. Mori, H. M. Motz, K. Munakata, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, N. Ospina, S. Ozawa, L. Pacini, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, S. Sugita, J. E. Suh, A. Sulaj, M. Takita, T. Tamura, T. Terasawa, S. Torii, Y. Tsunesada, Y. Uchihori, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Physical Review Letters   125 ( 25 )  2020.12

     View Summary

    In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope on the International Space Station from October 2015 to October 2019. Analysis, including the detailed assessment of systematic uncertainties, and results are reported. The energy spectra are measured in kinetic energy per nucleon from 10 GeV/n to 2.2 TeV/n with an all-calorimetric instrument with a total thickness corresponding to 1.3 nuclear interaction length. The observed carbon and oxygen fluxes show a spectral index change of ∼0.15 around 200 GeV/n established with a significance >3σ. They have the same energy dependence with a constant C/O flux ratio 0.911±0.006 above 25 GeV/n. The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer and the calorimetric balloon-borne experiment CREAM.

    DOI PubMed

    Scopus

    41
    Citation
    (Scopus)
  • Cosmic-ray signatures of dark matter from a flavor dependent gauge symmetry model with neutrino mass mechanism

    Holger Motz, Hiroshi Okada, Yoichi Asaoka, Kazunori Kohri

    Physical Review D   102 ( 8 )  2020.10

     View Summary

    © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3. We propose an extension to the Standard Model accommodating two families of Dirac neutral fermions and Majorana fermions under additional U(1)e-μ×Z3×Z2 symmetries where U(1)e-μ is a flavor dependent gauge symmetry related to the first and second family of the lepton sector, which features a two-loop induced neutrino mass model. The two families are favored by minimally reproducing the current neutrino oscillation data and two mass difference squares and canceling the gauge anomalies at the same time. As a result, we have a prediction for neutrino masses. The lightest Dirac neutral fermion is a dark matter candidate with tree-level interaction restricted to electron, muon and neutrinos, which makes it difficult to detect in direct dark matter search as well as indirect search focusing on the τ-channel, such as through γ-rays. It may however be probed by search for dark matter signatures in electron and positron cosmic rays, and allows interpretation of a structure appearing in the CALET electron+positron spectrum around 350-400 GeV as its signature, with a boost factor ∼40 Breit-Wigner enhancement of the annihilation cross section.

    DOI

    Scopus

    1
    Citation
    (Scopus)
  • CALET on the International Space Station: the first three years of observations

    P Brogi, O Adriani, Y Akaike, K Asano, Y Asaoka, M G Bagliesi, E Berti, G Bigongiari, W R Binns, S Bonechi, M Bongi, A Bruno, J H Buckley, N Cannady, G Castellini, C Checchia, M L Cherry, G Collazuol, V Di Felice, K Ebisawa, H Fuke, T G Guzik, T Hams, K Hibino, M Ichimura, K Ioka, W Ishizaki, M H Israel, K Kasahara, J Kataoka, R Kataoka, Y Katayose, C Kato, N Kawanaka, Y Kawakubo, K Kohri, H S Krawczynski, J F Krizmanic, J Link, P Maestro, P S Marrocchesi, A M Messineo, J W Mitchell, S Miyake, A A Moiseev, M Mori, N Mori, H M Motz, K Munakata, H Murakami, S Nakahira, J Nishimura, G A de Nolfo, S Okuno, J F Ormes, N Ospina, S Ozawa, L Pacini, F Palma, P Papini, B F Rauch, S B Ricciarini, K Sakai, T Sakamoto, M Sasaki, Y Shimizu, A Shiomi, R Sparvoli, P Spillantini, F Stolzi, S Sugita, J E Suh, A Sulaj, I Takahashi, M Takita, T Tamura, T Terasawa, S Torii, Y Tsunesada, Y Uchihori, E Vannuccini, J P Wefel, K Yamaoka, S Yanagita, A Yoshida, K Yoshida

    Physica Scripta   95 ( 7 ) 074012 - 074012  2020.07  [Refereed]

     View Summary

    The CALorimetric Electron Telescope CALET is a space instrument designed to carry out precision measurements of high energy cosmic-rays on the JEM-EF external platform on the International Space Station, where it has been collecting science data continuously since mid October 2015. In addition to its primary goal of identifying nearby sources of high-energy electrons and possible signatures of dark matter in the electron spectrum, CALET is carrying out extensive measurements of the energy spectra, relative abundances and secondary-to-primary ratios of elements from proton to iron, and even above (up to Z = 40), studying the details of galactic particle propagation and acceleration. An overview of CALET based on the data taken during the first three years of observations is presented, including a direct measurement of the electron+positron energy spectrum from 11 GeV to 4.8 TeV. The proton spectrum has been measured from 50 GeV to 10 TeV covering, for the first time with a single space-borne instrument, the whole energy interval previously investigated in separate sub-ranges by magnetic spectrometers and calorimetric instruments. Preliminary spectra of cosmic-ray nuclei are also presented, together with gamma-ray observations and searches for an e.m. counterpart of LIGO/Virgo GW events.

    DOI

    Scopus

    3
    Citation
    (Scopus)
  • CALET Results after Three Years on Orbit on the International Space Station

    P. Maestro, O. Adriani, Y. Akaike, Y. Asaoka, E. Berti, G. Bigongiari, M. Bongi, P. Brogi, A. Bruno, N. Cannady, C. Checchia, M. L. Cherry, G. Collazuol, T. G. Guzik, M. Ichimura, M. H. Israel, K. Kasahara, Y. Kawakubo, J. F. Krizmanic, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, M. Mori, N. Mori, H. M. Motz, K. Munakata, L. Pacini, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, T. Sakamoto, M. Sasaki, F. Stolzi, A. Sulaj, T. Tamura, S. Torii, J. P. Wefel, K. Yoshida

    Physics of Atomic Nuclei   82 ( 6 ) 766 - 772  2019.11

    DOI

  • Interpretation of the CALET Electron+Positron Spectrum concerning Dark Matter Signatures

    H. Motz, Y. Asaoka, S. Bhattacharyya

    Proceedings of Science   ICRC2019 ( 533 )  2019.07

  • Analysis of CALET Data for Anisotropy in Electron+Positron Cosmic Rays

    H. Motz, Y. Asaoka, for, the, CALET collaboration

    Proceedings of Science   ICRC2019 ( 112 )  2019.07

  • Direct Measurement of the Cosmic-Ray Proton Spectrum from 50 GeV to 10 TeV with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, A. Bruno, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Physical Review Letters   122 ( 18 ) 1102  2019.05  [Refereed]

     View Summary

    © 2019 authors. In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observation period used in this analysis is from October 13, 2015 to August 31, 2018 (1054 days). We have achieved the very wide energy range necessary to carry out measurements of the spectrum from 50 GeV to 10 TeV covering, for the first time in space, with a single instrument the whole energy interval previously investigated in most cases in separate subranges by magnetic spectrometers (BESS-TeV, PAMELA, and AMS-02) and calorimetric instruments (ATIC, CREAM, and NUCLEON). The observed spectrum is consistent with AMS-02 but extends to nearly an order of magnitude higher energy, showing a very smooth transition of the power-law spectral index from-2.81±0.03 (50-500 GeV) neglecting solar modulation effects (or-2.87±0.06 including solar modulation effects in the lower energy region) to-2.56±0.04 (1-10 TeV), thereby confirming the existence of spectral hardening and providing evidence of a deviation from a single power law by more than 3σ.

    DOI PubMed

    Scopus

    157
    Citation
    (Scopus)
  • The CALorimetric Electron Telescope (CALET) on the International Space Station: Results from the First Two Years of Operation

    Asaoka, Y, Adriani, O, Akaike, Y, Asano, K, Bagliesi, M. G, Berti, E, Bigongiari, G, Binns, W. R, Bonechi, S, Bongi, M, Bruno A, Brogi, P, Buckley, J. H, Cannady, N, Castellini, G, Checchia, C, Cherry, M. L, Collazuol, G, di Felice, V, Ebisawa, K, Fuke, H, Guzik, T. G, Hams, T, Hasebe, N, Hibino, K, Ichimura, M, Ioka, K, Ishizaki, W, Israel, M. H, Kasahara, K, Kataoka, J, Kataoka, R, Katayose, Y, Kato, C, Kawanaka, N, Kawakubo, Y, Kohri, K, Krawczynski, H. S

    EPJ Web of Conferences   208 ( 13001 )  2019.05

    DOI

  • The CALorimetric Electron Telescope (CALET) on the international space station: Results from the first two years on orbit

    Y. Asaoka, O. Adriani, Y. Akaike, K. Asano, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, A. Bruno, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, V. Pal'Shin, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, S. Sugita, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Journal of Physics: Conference Series   1181 ( 1 ) 012003  2019.03  [Refereed]

     View Summary

    © Published under licence by IOP Publishing Ltd. The CALorimetric Electron Telescope (CALET) is a high-energy astroparticle physics space experiment installed on the International Space Station (ISS), developed and operated by Japan in collaboration with Italy and the United States. The CALET mission goals include the investigation of possible nearby sources of high-energy electrons, of the details of galactic particle acceleration and propagation, and of potential signatures of dark matter. CALET measures the cosmic-ray electron+positron flux up to 20 TeV, gamma-rays up to 10 TeV, and nuclei with Z=1 to 40 up to 1, 000 TeV for the more abundant elements during a long-term observation aboard the ISS. Starting science operation in mid-October 2015, CALET performed continuous observation without major interruption with close to 20 million triggered events over 10 GeV per month. Based on the data taken during the first two-years, we present an overview of CALET observations: 1) Electron+positron energy spectrum, 2) Nuclei analysis, 3) Gamma-ray observation including a characterization of on-orbit performance. Results of the electromagnetic counterpart search for LIGO/Virgo gravitational wave events are discussed as well.

    DOI

    Scopus

    14
    Citation
    (Scopus)
  • Characteristics and Performance of the CALorimetric Electron Telescope (CALET) Calorimeter for Gamma-Ray Observations

    N. Cannady, Y. Asaoka, F. Satoh, M. Tanaka, S. Torii, M. L. Cherry, M. Mori, O. Adriani, Y. Akaike, K. Asano, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, G. Castellini, C. Checchia, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A.De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Astrophysical Journal, Supplement Series   238 ( 1 ) 5  2018.09  [Refereed]

     View Summary

    © 2018. The American Astronomical Society. All rights reserved. The CALorimetric Electron Telescope primary detector (CALET-CAL) is a 30 radiation-length-deep hybrid calorimeter designed for the accurate measurement of high-energy cosmic rays. It is capable of triggering on and giving near complete containment of electromagnetic showers from primary electrons and gamma rays from 1 GeV to over 10 TeV. The first 24 months of on-orbit scientific data (2015 November 01-2017 October 31) provide valuable characterization of the performance of the calorimeter based on analyses of the gamma-ray data set in general and bright point sources in particular. We describe the gamma-ray analysis, the expected performance of the calorimeter based on Monte Carlo simulations, the agreement of the flight data with the simulated results, and the outlook for long-term gamma-ray observations with the CAL.

    DOI

    Scopus

    19
    Citation
    (Scopus)
  • Search for GeV Gamma-Ray Counterparts of Gravitational Wave Events by CALET

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. S. Krawczynski, J. F. Krizmanic, K. Kohri, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Astrophysical Journal   863 ( 2 ) 9  2018.08  [Refereed]

     View Summary

    © 2018. The American Astronomical Society. All rights reserved. We present the results of searches for gamma-ray counterparts of the LIGO/Virgo gravitational wave events using CALorimetric Electron Telescope (CALET) observations. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view (FOV) of nearly 2 sr. In addition, the CALET gamma-ray burst monitor views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different crystal scintillators. The CALET observations on the International Space Station started in 2015 October, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814, and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049 ∼ 1053 erg s-1 in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately on the order of luminosity of typical short gamma-ray bursts. This implies that there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our FOV. We also show the sensitivity of CALET for gamma-ray transient events, which is on the order of 10-7 erg cm-2 s-1 for an observation of 100 s in duration.

    DOI

    Scopus

    22
    Citation
    (Scopus)
  • Searching for Cosmic-Ray Signals from Decay of Fermionic Dark Matter with CALET

    Bhattacharyya, S, Motz, H, Torii, S, Torii, S, Asaoka, Y

    Proceedings of Science   ICRC2017 (2018) ( 919 )  2018.08

     View Summary

    The ISS-based CALET detector which is in operation since October 2015, can play an important role in indirect search of Dark Matter by measuring the electron + positron cosmic-ray spectrum in the TeV region for the first time directly. With its fine energy resolution (∼2%) and high proton rejection ratio (1: 105), CALET has a capability to detect fine structures in (e+ + e-) spectrum. In this work, we have investigated CALET's potential to discern between Dark Matter decay and nearby pulsars as the origin of the Cosmic Ray positron excess observed by PAMELA or AMS-02. A parametrization of the propagated electron and positron spectra is fitted to the existing measurements, where either 3-body decay of Fermionic Dark Matter or pulsar assumed responsible for the positron excess. Expected CALET data for Dark Matter decay models which can explain the positron excess are calculated and analyzed. The signal from a particular 3-body Dark Matter decay, which can explain the measurements from the AMS-02 experiment, is shown to be distinguishable from a single pulsar source by observing (e+ +e-) spectrum with CALET. We show that an especially clear separation of the pulsar model is possible from the Dark Matter model for which the diffuse γ-ray flux is possibly compatible with the Fermi-LAT data.

    DOI

  • Searching for Anisotropy in Electron+Positron Cosmic Rays with CALET

    Motz, H, Asaoka, Y, Torii, S, Bhattacharyya, S

    Proceedings of Science   ICRC2017 (2018) ( 265 )  2018.08

     View Summary

    The ISS-based Calorimetric Electron Telescope (CALET) is directly measuring the energy spectrum and direction distribution of electron+positron cosmic-rays up to 20 TeV. A main goal of CALET is to identify a signature of a nearby supernova remnant (SNR) in electron+positron cosmic-rays. The Vela SNR has the highest potential to cause a spectral feature in the TeV region and/or a detectable anisotropy. Using the numerical cosmic-ray propagation code DRAGON, the spectrum and expected anisotropy of the Vela SNR together with background from more distant SNR was calculated depending on injection and propagation conditions. The results of these calculations were used to simulate CALET event sky-maps on which several analysis methods were employed to estimate the CALET sensitivity. Assuming that there is no anisotropy, the expected limits on the dipole amplitude from an all-sky search were calculated as a function of the selected energy range and the shape of the predicted spectra. However for the detection of a dipole anisotropy, the direction towards Vela is predetermined, and sensitivity is strongly boosted by a directed search. It is shown that with this method, CALET has a significant probability to identify an anisotropy signature from Vela. As it may disturb the Vela signature, the contribution to the local cosmic-ray anisotropy from several other nearby SNR and pulsars, as well as from the general source distribution in the galaxy was studied. It was found that Vela is expected to dominate and have a detectable signature, though there is some influence from other sources on direction and strength of the anisotropy. Furthermore, the implications of detecting an dipole anisotropy directed towards Vela for the local propagation parameters, such as the diffusion coefficient, are explained.

    DOI

    Scopus

  • On-orbit operations and offline data processing of CALET onboard the ISS

    Y. Asaoka, S. Ozawa, S. Torii, O. Adriani, Y. Akaike, K. Asano, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. de Nolfo, S. Okuno, J. F. Ormes, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda

    Astroparticle Physics   100   29 - 37  2018.07  [Refereed]

     View Summary

    © 2018 Elsevier B.V. The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda University, respectively. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of ∼ 84%. Nearly 450 million events are collected with a high-energy (E > 10 GeV) trigger. In addition, calibration data acquisition and low-energy trigger modes, as well as an ultra-heavy trigger mode, are consistently scheduled around the ISS orbit. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.

    DOI

    Scopus

    50
    Citation
    (Scopus)
  • Extended Measurement of the Cosmic-Ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, E. Berti, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, K. Kohri, H. S. Krawczynski, J. F. Krizmanic, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, J. E. Suh, A. Sulaj, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida

    Physical Review Letters   120 ( 26 )  2018.06  [Refereed]

     View Summary

    © 2018 American Physical Society. Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The analysis uses the full detector acceptance at high energies, approximately doubling the statistics compared to the previous result. CALET is an all-calorimetric instrument with a total thickness of 30 X0 at normal incidence and fine imaging capability, designed to achieve large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum in the region below 1 TeV shows good agreement with Alpha Magnetic Spectrometer (AMS-02) data. In the energy region below ∼300 GeV, CALET's spectral index is found to be consistent with the AMS-02, Fermi Large Area Telescope (Fermi-LAT), and Dark Matter Particle Explorer (DAMPE), while from 300 to 600 GeV the spectrum is significantly softer than the spectra from the latter two experiments. The absolute flux of CALET is consistent with other experiments at around a few tens of GeV. However, it is lower than those of DAMPE and Fermi-LAT with the difference increasing up to several hundred GeV. The observed energy spectrum above ∼1 TeV suggests a flux suppression consistent within the errors with the results of DAMPE, while CALET does not observe any significant evidence for a narrow spectral feature in the energy region around 1.4 TeV. Our measured all-electron flux, including statistical errors and a detailed breakdown of the systematic errors, is tabulated in the Supplemental Material in order to allow more refined spectral analyses based on our data.

    DOI PubMed

    Scopus

    186
    Citation
    (Scopus)
  • An Interpretation of the Cosmic Ray e^+ + e^- Spectrum from 10 GeV to 3 TeV Measured by CALET on the ISS

    Bhattacharyya, S, Motz, H, Asaoka, Y, Torii, S

    International Journal of Modern Physics D   accepted ( 02 ) 1950035 - 1950035  2017.12  [Refereed]

     View Summary

    A combined interpretation of the Calorimetric Electron Telescope (CALET) [Formula: see text] spectrum up to 3[Formula: see text]TeV and the AMS-02 positron spectrum up to 500[Formula: see text]GeV was performed and the results are discussed. To parametrize the background electron flux, we assume a smoothly broken power-law spectrum with an exponential cutoff for electrons and fit this parametrization to the measurements, with either a pulsar or 3-body decay of fermionic Dark Matter (DM) as the extra electron–positron pair source responsible for the positron excess. We found that depending on the parameters for the background, both DM decay and the pulsar model can explain the combined measurements. While the DM decay scenario is constrained by the Fermi-LAT [Formula: see text]-ray measurement, we show that 3-body decay of a 800[Formula: see text]GeV DM can be compatible with the [Formula: see text]-ray flux measurement.

    We discuss the capability of CALET to discern decaying DM models from a generic pulsar source scenario, based on simulated data for five years of data-taking.

    DOI

    Scopus

    1
    Citation
    (Scopus)
  • Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, S. Nakahira, J. Nishimura, G. A. De Nolfo, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. B. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda

    Physical Review Letters   119 ( 18 )  2017.11  [Refereed]

     View Summary

    © 2017 Published by the American Physical Society. First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X0 and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.

    DOI PubMed

    Scopus

    154
    Citation
    (Scopus)
  • Decaying fermionic dark matter search with CALET

    S. Bhattacharyya, H. Motz, S. Torii, Y. Asaoka

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   2017 ( 8 )  2017.08  [Refereed]

     View Summary

    The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1 : 10(5)) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with either a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS-02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse gamma-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.

    DOI

    Scopus

    5
    Citation
    (Scopus)
  • Energy calibration of CALET onboard the International Space Station

    Y. Asaoka, Y. Akaike, Y. Komiya, R. Miyata, S. Torii, O. Adriani, K. Asano, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. Kitamura, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda

    Astroparticle Physics   91   1 - 10  2017.05  [Refereed]

     View Summary

    © 2017 The Authors In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.

    DOI

    Scopus

    73
    Citation
    (Scopus)
  • CALET UPPER LIMITS on X-RAY and GAMMA-RAY COUNTERPARTS of GW151226

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, P. Brogi, J. H. Buckley, N. Cannady, G. Castellini, C. Checchia, M. L. Cherry, G. Collazuol, V. Di Felice, K. Ebisawa, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, W. Ishizaki, M. H. Israel, A. Javaid, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, C. Kato, N. Kawanaka, Y. Kawakubo, H. Kitamura, H. S. Krawczynski, J. F. Krizmanic, S. Kuramata, T. Lomtadze, P. Maestro, P. S. Marrocchesi, A. M. Messineo, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, L. Pacini, F. Palma, P. Papini, A. V. Penacchioni, B. F. Rauch, S. Ricciarini, K. Sakai, T. Sakamoto, M. Sasaki, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, F. Stolzi, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tsunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda

    Astrophysical Journal Letters   829 ( 1 ) 5  2016.09  [Refereed]

     View Summary

    © 2016. The American Astronomical Society. All rights reserved.. We present upper limits in the hard X-ray and gamma-ray bands at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) gravitational-wave event GW151226 derived from the CALorimetric Electron Telescope (CALET) observation. The main instrument of CALET, CALorimeter (CAL), observes gamma-rays from ∼1 GeV up to 10 TeV with a field of view of ∼2 sr. The CALET gamma-ray burst monitor (CGBM) views ∼3 sr and ∼2π sr of the sky in the 7 keV-1 MeV and the 40 keV-20 MeV bands, respectively, by using two different scintillator-based instruments. The CGBM covered 32.5% and 49.1% of the GW151226 sky localization probability in the 7 keV-1 MeV and 40 keV-20 MeV bands respectively. We place a 90% upper limit of 2 ×10-7 erg cm-2 s-1 in the 1-100 GeV band where CAL reaches 15% of the integrated LIGO probability (∼1.1 sr). The CGBM 7σ upper limits are 1.0 ×10-6 erg cm-2 s-1 (7-500 keV) and 1.8 ×10-6 erg cm-2 s-1 (50-1000 keV) for a 1 s exposure. Those upper limits correspond to the luminosity of 3-5 ×1049 erg s-1, which is significantly lower than typical short GRBs.

    DOI

    Scopus

    36
    Citation
    (Scopus)
  • Self Consistent Simulation of Dark Matter Annihilation and Background

    Bhattacharyya, S, Motz, H, Torii, S, Asaoka, Y, Okada Y

    Proceedings of Science   ICRC2015 (2016) ( 1182 )  2016.08

     View Summary

    Future space based experiments such as CALET and DAMPE will measure the electron and positron cosmic-ray spectrum with better energy resolution and up to higher energy, making detection of small features in the spectrum, which might originate from Dark Matter annihilation or decay in the galactic halo, possible. For precise prediction of these features, the numerical cosmic ray propagation code GALPROP is used, and was extended to calculate the flux at Earth from different Dark Matter scenarios with any given injection spectrum. The results from GALPROP for both the cosmic-ray background spectrum and the component from Dark Matter annihilation are dependent on the bin size in energy used in the calculation, due to energy loss playing a major role in the propagation of electrons. A modification to partly compensate the influence of the discretization of the energy shifted particles has been implemented in the code. The effect of this improvement is demonstrated with examples of the expected spectra for the cosmic ray background in combination with the annihilation spectrum of LKP Dark Matter calculated at different energy binning.

    DOI

  • CALET's Sensitivity to Dark Matter and Astrophysical Sources

    Motz, H. for, the CALET collaboration

    Proceedings of Science   PoS ICRC2015 (2015) ( 1194 )  2016.08

    DOI

  • 19aAZ-2 Optimization of Electron Observation Condition for CALET onboard ISS

    Asaoka Yoichi, Torii Shoji, Kasahara Katsuaki, Akaike Yosui, Ozawa Shunsuke, Ando Yuki, Kamio Taiju, Satoh Fumiya, Takemoto Shoichi, Tanaka Mizuki, Miyata Ryohei, Yamaguchi Masayuki, Yamato Keiichi, Motz Holger, Shimizu Yuki, Tamura Tadahisa, Ueno Shiro, Tomida Hiroshi, the CALET collaboration

    Meeting Abstracts of the Physical Society of Japan   71   457 - 457  2016

    DOI CiNii

  • 19aAZ-4 MIP Calibration of CALET Using On-Orbit Data

    Komiya Yuma, Torii Shoji, Kasahara Katsuaki, Akaike Yosui, Asaoka Yoichi, Ozawa Shunsuke, Motz Holger, Shimizu Yuki, Tamura Tadahisa, CALET collaborating teams

    Meeting Abstracts of the Physical Society of Japan   71   459 - 459  2016

    DOI CiNii

  • 19aAT-3 Discerning Pulsar and Dark Matter Explanations of the Positron Excess with CALET

    Motz Holger, Asaoka Yoichi, Torii Shoji, Bhattacharyya Saptashwa

    Meeting Abstracts of the Physical Society of Japan   71   454 - 454  2016

    DOI CiNii

  • Investigating Leptonic 3-Particle Dark Matter Decay as the Source of the Positron Excess with CALET

    Motz Holger, Asaoka Yoichi, Torii Shoji, Bhattacharyya Saptashwa

    Meeting Abstracts of the Physical Society of Japan   71   311 - 311  2016

     View Summary

    <p>With supernova remnants assumed to be the main source of electron cosmic rays, an extra source emitting an equal amount of electrons and positrons could explain the observed positron excess. Candidates for this source are nearby PWN and Dark Matter annihilation or decay. The Calorimetric Electron Telescope (CALET) on the ISS is measuring the energy spectrum of electron+positron cosmic rays up to 20 TeV, which might contain a signature from the extra source. Dark Matter decaying in a 3-particle leptonic mode could fully explain the positron excess as it is not constrained by anti-proton measurements. A variety of branching fractions for the lepton generations and different propagation parameters were studied, identifying scenarios which are in agreement with current experimental data. The expected signal and background in CALET was calculated for these cases and the possibility to discern them from a PWN being the extra source analysed.</p>

    DOI CiNii

  • CALET's sensitivity to Dark Matter annihilation in the galactic halo

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   2015 ( 12 )  2015.12  [Refereed]

     View Summary

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 10(5) and an aperture of 1200 cm(2).sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e(+)+e(-), such as the LKP (Lightest Kaluza-Klein particle).

    DOI

    Scopus

    7
    Citation
    (Scopus)
  • The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

    O. Adriani, Y. Akaike, K. Asano, Y. Asaoka, M. G. Bagliesi, G. Bigongiari, W. R. Binns, S. Bonechi, M. Bongi, J. H. Buckley, G. Castellini, M. L. Cherry, G. Collazuol, K. Ebisawa, V. Di Felice, H. Fuke, T. G. Guzik, T. Hams, M. Hareyama, N. Hasebe, K. Hibino, M. Ichimura, K. Ioka, M. H. Israel, A. Javaid, E. Kamioka, K. Kasahara, J. Kataoka, R. Kataoka, Y. Katayose, N. Kawanaka, H. Kitamura, T. Kotani, H. S. Krawczynski, J. F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, J. W. Mitchell, S. Miyake, K. Mizutani, A. A. Moiseev, K. Mori, M. Mori, N. Mori, H. M. Motz, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, F. Palma, P. Papini, B. F. Rauch, S. B. Ricciarini, T. Sakamoto, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda

    Journal of Physics: Conference Series   632 ( 1 ) 012023  2015.08  [Refereed]

     View Summary

    © Published under licence by IOP Publishing Ltd. The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).

    DOI

    Scopus

    7
    Citation
    (Scopus)
  • 26pSJ-2 Mission Operations at Waseda CALET Operations Center (WCOC)

    Asaoka Yoichi, Torii Shoji, Akaike Yosui, Ozawa Shunsuke, Kasahara Katsuaki, Kamio Taiju, Niita Tae, Motz Holger, Shimizu Yuki, Tamura Tadahisa, Ueno Shiro, Tomida Hiroshi, CALET collaboration

    Meeting Abstracts of the Physical Society of Japan   70   365 - 365  2015

    DOI CiNii

  • 26pSJ-3 Optimization of the CALET observation condition based on simulated events

    Yamato Keiichi, Torii Shoji, Asaoka Yoichi, Kasahara Katsuaki, Akaike Yosui, Ozawa Shunsuke, Kamio Taiju, Takemoto Shoichi, Yamaguchi Masayuki, Motz Holger, Shimizu Yuki, Tamura Tadahisa, Ueno Shiro, Tomida Hiroshi, CALET collaboration

    Meeting Abstracts of the Physical Society of Japan   70   366 - 366  2015

    DOI CiNii

  • 26pSJ-8 Performance of the CALET-CHD charge resolution evaluated by CERN-SPS heavy ion beam tests

    Okada Yuko, Torii Shoji, Asaoka Yoichi, Kasahara Katsuaki, Ozawa Shunsuke, Akaike Yosui, Tanaka Masafumi, Tsuchikawa Eriko, Motz Holger, Tamura Tadahisa, CALET collaboration

    Meeting Abstracts of the Physical Society of Japan   70   367 - 367  2015

    DOI CiNii

  • 21pDC-9 Expected Dark Matter Sensitivity of CALET in Relation to Present and Future AMS-02 Observation

    Motz Holger, Asaoka Yoichi, Torii Shoji, Bhattacharyya Saptashwa, Niita Tae, Okada Yuko, Akaike Yosui, CALET collaboration

    Meeting Abstracts of the Physical Society of Japan   70   402 - 402  2015

    DOI CiNii

  • 21pDC-5 Development of data control system for CALET on-orbit operation

    Kamio Taiju, Torii Shoji, Ozawa Shunsuke, Shimomura Kenta, Niita Tae, Rikiishi Kazuki, Asaoka Yoichi, Kasahara Katsuaki, Motz Holger, Tamura Tadahisa, Shimizu Yuki, Akaike Yosui

    Meeting Abstracts of the Physical Society of Japan   70   400 - 400  2015

    DOI CiNii

  • 21pDC-10 Self Consistent Simulation of Cosmic Ray Propagation Including Dark Matter Signatures

    Bhattacharyya Saptashwa, Motz Holger, Torii Shoji, Asaoka Yoichi, Okada Yuko

    Meeting Abstracts of the Physical Society of Japan   70   403 - 403  2015

    DOI CiNii

  • Status and performance of the CALorimetric Electron Telescope (CALET) on the international space station

    O. Adriani, Y. Akaike, Y. Asaoka, K. Asano, M. G. Bagliesi, G. Bigongiari, W. R. Binns, M. Bongi, J. H. Buckley, A. Cassese, G. Castellini, M. L. Cherry, G. Collazuol, K. Ebisawa, V. di Felice, H. Fuke, T. G. Guzik, T. Hamsa, N. Hasebe, M. Hareyama, K. Hibino, M. Ichimura, K. Ioka, M. H. Israel, A. Javaid, E. Kamioka, K. Kasahara, Y. Katayose, J. Kataoka, R. Kataoka, N. Kawanaka, H. Kitamura, T. Kotani, H. S. Krawczynski, J. F. Krizmanic, A. Kubota, S. Kuramata, T. Lomtadze, P. Maestro, L. Marcelli, P. S. Marrocchesi, J. W. Mitchell, S. Miyake, K. Mizutani, H. M. Motz, A. A. Moiseev, K. Mori, M. Mori, N. Mori, K. Munakata, H. Murakami, Y. E. Nakagawa, S. Nakahira, J. Nishimura, S. Okuno, J. F. Ormes, S. Ozawa, F. Palma, P. Papini, B. F. Rauch, S. Ricciarini, T. Sakamoto, M. Sasaki, M. Shibata, Y. Shimizu, A. Shiomi, R. Sparvoli, P. Spillantini, I. Takahashi, M. Takayanagi, M. Takita, T. Tamura, N. Tateyama, T. Terasawa, H. Tomida, S. Torii, Y. Tunesada, Y. Uchihori, S. Ueno, E. Vannuccini, J. P. Wefel, K. Yamaoka, S. Yanagita, A. Yoshida, K. Yoshida, T. Yuda

    Nuclear Physics B - Proceedings Supplements   256-257   225 - 232  2014.12  [Refereed]

     View Summary

    © 2014 Elsevier B.V. The CALorimetric Electron Telescope (CALET) space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV during a two-year mission on the International Space Station (ISS), extendable to five years. These measurements are essential to search for dark matter signatures, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument will be launched to the ISS within 2014 Japanese Fiscal Year (by the end of March 2015) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF). In this paper, we will review the status and main science goals of the mission and describe the instrument configuration and performance.

    DOI

    Scopus

    10
    Citation
    (Scopus)
  • Ashra NTA: Towards Survey of Astronomical ντ Sources

    Y. Aita, T. Aoki, Y. Asaoka, Y. Morimoto, H. M Motz, M. Sasaki, C. Abiko, C. Kanokohata, S. Ogawa, H. Shibuya, T. Takada, T. Kimura, J. G. Learned, S. Matsuno, S. Kuze, P. M. Binder, J. Goldman, N. Sugiyama, Y. Watanabe, nd Ashra, Collaboration

    JPS Conference Proceedings   1 ( 013095 )  2014.07

    DOI

  • Trigger and Readout System for the Ashra-1 Detector

    Y. Aita, T. Aoki, Y. Asaoka, Y. Morimoto, H. M Motz, M. Sasaki, C. Abiko, C. Kanokohata, S. Ogawa, H. Shibuya, T. Takada, T. Kimura, J. G. Learned, S. Matsuno, S. Kuze, P. M. Binder, J. Goldman, N. Sugiyama, Y. Watanabe, nd Ashra, Collaboration

    JPS Conference Proceedings   1 ( 013111 )  2014.07

    DOI

  • First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, L. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, A. Capone, C. Carloganu, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, F. Classen, R. Coniglione, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, A. Dumas, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J-L. Fuda, S. Galata, P. Gay, S. Geisselsoeder, K. Geyer, G. Giacomelli, V. Giordano, A. Gleixner, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Hallewell, M. Hamal, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, C. James, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, E. Leonora, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, S. Martini, T. Montaruli, M. Morganti, H. Motz, C. Mueller, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, J. Petrovic, P. Piattelli, V. Popa, T. Pradier, C. Racca, C. Reed, G. Riccobene, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, M. Rujoiu, D. F. E. Samtleben, A. Sanchez-Losa, P. Sapienza, J. Schmid, J. Schnabel, S. Schulte, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, A. Trovato, B. Vallage, C. Vallee, V. Van Elewyck, P. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, K. Yatkin, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   11(2013) ( 11 )  2013.11  [Refereed]

     View Summary

    A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W+W-, tau(+)tau(-)).

    DOI

    Scopus

    51
    Citation
    (Scopus)
  • Measurement of the atmospheric nu (mu) energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    S. Adrian-Martinez, A. Albert, I. Al Samarai, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J. -J. Aubert, B. Baret, J. Barrios-Marti, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, B. Bouhou, M. C. Bouwhuis, R. Bruijn, J. Brunner, J. Busto, A. Capone, L. Caramete, C. Carloganu, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, F. Classen, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, I. Dekeyser, A. Deschamps, G. De Bonis, M. P. Decowski, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, A. Dumas, T. Eberl, U. Emanuele, A. Enzenhoefer, J. -P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, V. Flaminio, F. Folger, U. Fritsch, L. A. Fusco, S. Galata, P. Gay, S. Geisselsoeder, K. Geyer, G. Giacomelli, V. Giordano, A. Gleixner, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. W. James, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, E. Lambard, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, E. Leonora, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, S. Martini, T. Michael, T. Montaruli, M. Morganti, H. Motz, C. Mueller, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, C. Perrina, P. Piattelli, V. Popa, T. Pradier, C. Racca, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, J. Schmid, J. Schnabel, S. Schulte, F. Schuessler, T. Seitz, R. Shanidze, C. Sieger, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, Y. Tayalati, A. Trovato, B. Vallage, C. Vallee, V. Van Elewyck, P. Vernin, E. Visser, S. Wagner, J. Wilms, E. de Wolf, K. Yatkin, H. Yepes, J. D. Zornoza, J. Zuniga

    EUROPEAN PHYSICAL JOURNAL C   73 ( 10 )  2013.10  [Refereed]

     View Summary

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is similar to 25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma (meas)=3.58 +/- 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.

    DOI

    Scopus

    68
    Citation
    (Scopus)
  • SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, L. J. Beemster, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph Charvis, T. Chiarusi, M. Circella, R. Coniglione, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, M. Ferri, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J-L. Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, N. Morganti, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, D. F. E. Samtleben, A. Sanchez-Losa, P. Sapienza, F. Schoeck, J-P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th Stolarczyk, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, C. Vallee, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, D. Zornoza, J. Zuniga

    ASTROPHYSICAL JOURNAL   774 ( 1 ) 7  2013.09  [Refereed]

     View Summary

    A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.

    DOI

    Scopus

    10
    Citation
    (Scopus)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, A. Capone, C. C. Arloganu, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, M. Ferri, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J-L. Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Hallewell, M. Hamal, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, S. Martini, A. Meli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, J. Petrovic, P. Piattelli, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, D. F. E. Samtleben, A. Sanchez-Losa, P. Sapienza, J. Schmid, J. Schnabel, F. Schoeck, J-P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, A. Trovato, B. Vallage, C. Vallee, V. Van Elewyck, M. Vecchi, P. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga, J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, T. Adams, P. Addesso, R. Adhikari, C. Affeldt, M. Agathos, K. Agatsuma, P. Ajith, B. Allen, A. Allocca, E. Amador Ceron, D. Amariutei, S. B. Anderson, W. G. Anderson, K. Arai, M. C. Araya, S. Ast, S. M. Aston, P. Astone, D. Atkinson, P. Aufmuth, C. Aulbert, B. E. Aylott, S. Babak, P. Baker, G. Ballardin, S. Ballmer, Y. Bao, J. C. B. Barayoga, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, M. A. Barton, I. Bartos, R. Bassiri, M. Bastarrika, A. Basti, J. Batch, J. Bauchrowitz, Th. S. Bauer, M. Bebronne, D. Beck, B. Behnke, M. Bejger, M. G. Beker, A. S. Bell, C. Bell, I. Belopolski, M. Benacquista, J. M. Berliner, A. Bertolini, J. Betzwieser, N. Beveridge, P. T. Beyersdorf, T. Bhadbade, I. A. Bilenko, G. Billingsley, J. Birch, R. Biswas, M. Bitossi, M. A. Bizouard, E. Black, J. K. Blackburn, L. Blackburn, D. Blair, B. Bland, M. Blom, O. Bock, T. P. Bodiya, C. Bogan, C. Bond, R. Bondarescu, F. Bondu, L. Bonelli, R. Bonnand, R. Bork, M. Born, V. Boschi, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, J. Breyer, T. Briant, D. O. Bridges, A. Brillet, M. Brinkmann, V. Brisson, M. Britzger, A. F. Brooks, D. A. Brown, T. Bulik, H. J. Bulten, A. Buonanno, J. Burguet-Castell, D. Buskulic, C. Buy, R. L. Byer, L. Cadonati, G. Cagnoli, E. Calloni, J. B. Camp, P. Campsie, K. Cannon, B. Canuel, J. Cao, C. D. Capano, F. Carbognani, L. Carbone, S. Caride, S. Caudill, M. Cavaglia, F. Cavalier, R. Cavalieri, G. Cella, C. Cepeda, E. Cesarini, T. Chalermsongsak, P. Charlton, E. Chassande-Mottin, W. Chen, X. Chen, Y. Chen, A. Chincarini, A. Chiummo, H. S. Cho, J. Chow, N. Christensen, S. S. Y. Chua, C. T. Y. Chung, S. Chung, G. Ciani, F. Clara, D. E. Clark, J. A. Clark, J. H. Clayton, F. Cleva, E. Coccia, P. -F. Cohadon, C. N. Colacino, A. Colla, M. Colombini, A. Conte, R. Conte, D. Cook, T. R. Corbitt, M. Cordier, N. Cornish, A. Corsi, C. A. Costa, M. Coughlin, J. -P. Coulon, P. Couvares, D. M. Coward, M. Cowart, D. C. Coyne, J. D. E. Creighton, T. D. Creighton, A. M. Cruise, A. Cumming, L. Cunningham, E. Cuoco, R. M. Cutler, K. Dahl, M. Damjanic, S. L. Danilishin, S. D'Antonio, K. Danzmann, V. Dattilo, B. Daudert, H. Daveloza, M. Davier, E. J. Daw, R. Day, T. Dayanga, R. De Rosa, D. Debra, G. Debreczeni, J. Degallaix, W. Del Pozzo, T. Dent, V. Dergachev, R. DeRosa, S. Dhurandhar, L. Di Fiore, A. Di Lieto, I. Di Palma, M. Di Paolo Emilio, A. Di Virgilio, M. Diaz, A. Dietz, F. Donovan, K. L. Dooley, S. Doravari, S. Dorsher, M. Drago, R. W. P. Drever, J. C. Driggers, Z. Du, J. -C. Dumas, S. Dwyer, T. Eberle, M. Edgar, M. Edwards, A. Effler, P. Ehrens, G. Endroczi, R. Engel, T. Etzel, K. Evans, M. Evans, T. Evans, M. Factourovich, V. Fafone, S. Fairhurst, B. F. Farr, M. Favata, D. Fazi, H. Fehrmann, D. Feldbaum, I. Ferrante, F. Ferrini, F. Fidecaro, L. S. Finn, I. Fiori, R. P. Fisher, R. Flaminio, S. Foley, E. Forsi, L. A. Forte, N. Fotopoulos, J. -D. Fournier, J. Franc, S. Franco, S. Frasca, F. Frasconi, M. Frede, M. A. Frei, Z. Frei, A. Freise, R. Frey, T. T. Fricke, D. Friedrich, P. Fritschel, V. V. Frolov, M. -K. Fujimoto, P. J. Fulda, M. Fyffe, J. Gair, M. Galimberti, L. Gammaitoni, J. Garcia, F. Garufi, M. E. Gaspar, G. Gelencser, G. Gemme, E. Genin, A. Gennai, L. A. Gergely, S. Ghosh, J. A. Giaime, S. Giampanis, K. D. Giardina, A. Giazotto, S. Gil-Casanova, C. Gill, J. Gleason, E. Goetz, G. Gonzalez, M. L. Gorodetsky, S. Gossler, R. Gouaty, C. Graef, P. B. Graff, M. Granata, A. Grant, C. Gray, R. J. S. Greenhalgh, A. M. Gretarsson, C. Griffo, H. Grote, K. Grover, S. Grunewald, G. M. Guidi, C. Guido, R. Gupta, E. K. Gustafson, R. Gustafson, J. M. Hallam, D. Hammer, G. Hammond, J. Hanks, C. Hanna, J. Hanson, J. Harms, G. M. Harry, I. W. Harry, E. D. Harstad, M. T. Hartman, K. Haughian, K. Hayama, J. -F. Hayau, J. Heefner, A. Heidmann, M. C. Heintze, H. Heitmann, P. Hello, G. Hemming, M. A. Hendry, I. S. Heng, A. W. Heptonstall, V. Herrera, M. Heurs, M. Hewitson, S. Hild, D. Hoak, K. A. Hodge, K. Holt, M. Holtrop, T. Hong, S. Hooper, J. Hough, E. J. Howell, B. Hughey, S. Husa, S. H. Huttner, T. Huynh-Dinh, D. R. Ingram, R. Inta, T. Isogai, A. Ivanov, K. Izumi, M. Jacobson, E. James, Y. J. Jang, P. Jaranowski, E. Jesse, W. W. Johnson, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, P. Kalmus, V. Kalogera, S. Kandhasamy, G. Kang, J. B. Kanner, M. Kasprzack, R. Kasturi, E. Katsavounidis, W. Katzman, H. Kaufer, K. Kaufman, K. Kawabe, S. Kawamura, F. Kawazoe, D. Keitel, D. Kelley, W. Kells, D. G. Keppel, Z. Keresztes, A. Khalaidovski, F. Y. Khalili, E. A. Khazanov, B. K. Kim, C. Kim, H. Kim, K. Kim, N. Kim, Y. M. Kim, P. J. King, D. L. Kinzel, J. S. Kissel, S. Klimenko, J. Kline, K. Kokeyama, V. Kondrashov, S. Koranda, W. Z. Korth, I. Kowalska, D. Kozak, V. Kringel, B. Krishnan, A. Krolak, G. Kuehn, P. Kumar, R. Kumar, R. Kurdyumov, P. Kwee, P. K. Lam, M. Landry, A. Langley, B. Lantz, N. Lastzka, C. Lawrie, A. Lazzarini, A. Le Roux, P. Leaci, C. H. Lee, H. K. Lee, H. M. Lee, J. R. Leong, I. Leonor, N. Leroy, N. Letendre, V. Lhuillier, J. Li, T. G. F. Li, P. E. Lindquist, V. Litvine, Y. Liu, Z. Liu, N. A. Lockerbie, D. Lodhia, J. Logue, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. Lough, M. Lubinski, H. Lueck, A. P. Lundgren, J. Macarthur, E. Macdonald, B. Machenschalk, M. MacInnis, D. M. Macleod, M. Mageswaran, K. Mailand, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, I. Mandel, V. Mandic, M. Mantovani, F. Marchesoni, F. Marion, S. Marka, Z. Marka, A. Markosyan, E. Maros, J. Marque, F. Martelli, I. W. Martin, R. M. Martin, J. N. Marx, K. Mason, A. Masserot, F. Matichard, L. Matone, R. A. Matzner, N. Mavalvala, G. Mazzolo, R. McCarthy, D. E. McClelland, S. C. McGuire, G. McIntyre, J. McIver, G. D. Meadors, M. Mehmet, T. Meier, A. Melatos, A. C. Melissinos, G. Mendell, D. F. Menendez, R. A. Mercer, S. Meshkov, C. Messenger, M. S. Meyer, H. Miao, C. Michel, L. Milano, J. Miller, Y. Minenkov, C. M. F. Mingarelli, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, B. Moe, M. Mohan, S. R. P. Mohapatra, D. Moraru, G. Moreno, N. Morgado, A. Morgia, T. Mori, S. R. Morriss, S. Mosca, K. Mossavi, B. Mours, C. M. Mow-Lowry, C. L. Mueller, G. Mueller, S. Mukherjee, A. Mullavey, H. Mueller-Ebhardt, J. Munch, D. Murphy, P. G. Murray, A. Mytidis, T. Nash, L. Naticchioni, V. Necula, J. Nelson, I. Neri, G. Newton, T. Nguyen, A. Nishizawa, A. Nitz, F. Nocera, D. Nolting, M. E. Normandin, L. Nuttall, E. Ochsner, J. O'Dell, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh, R. G. Oldenberg, B. O'Reilly, R. O'Shaughnessy, C. Osthelder, C. D. Ott, D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, A. Page, L. Palladino, C. Palomba, Y. Pan, C. Pankow, F. Paoletti, R. Paoletti, M. A. Papa, M. Parisi, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Pedraza, S. Penn, A. Perreca, G. Persichetti, M. Phelps, M. Pichot, M. Pickenpack, F. Piergiovanni, V. Pierro, M. Pihlaja, L. Pinard, I. M. Pinto, M. Pitkin, H. J. Pletsch, M. V. Plissi, R. Poggiani, J. Poeld, F. Postiglione, C. Poux, M. Prato, V. Predoi, T. Prestegard, L. R. Price, M. Prijatelj, M. Principe, S. Privitera, R. Prix, G. A. Prodi, L. G. Prokhorov, O. Puncken, M. Punturo, P. Puppo, V. Quetschke, R. Quitzow-James, F. J. Raab, D. S. Rabeling, I. Racz, H. Radkins, P. Raffai, M. Rakhmanov, C. Ramet, B. Rankins, P. Rapagnani, V. Raymond, V. Re, C. M. Reed, T. Reed, T. Regimbau, S. Reid, D. H. Reitze, F. Ricci, R. Riesen, K. Riles, M. Roberts, N. A. Robertson, F. Robinet, C. Robinson, E. L. Robinson, A. Rocchi, S. Roddy, C. Rodriguez, M. Rodruck, L. Rolland, J. G. Rollins, J. D. Romano, R. Romano, J. H. Romie, D. Rosinska, C. Roever, S. Rowan, A. Ruediger, P. Ruggi, K. Ryan, F. Salemi, L. Sammut, V. Sandberg, S. Sankar, V. Sannibale, L. Santamaria, I. Santiago-Prieto, G. Santostasi, E. Saracco, B. Sassolas, B. S. Sathyaprakash, P. R. Saulson, R. L. Savage, R. Schilling, R. Schnabel, R. M. S. Schofield, B. Schulz, B. F. Schutz, P. Schwinberg, J. Scott, S. M. Scott, F. Seifert, D. Sellers, D. Sentenac, A. Sergeev, D. A. Shaddock, M. Shaltev, B. Shapiro, P. Shawhan, D. H. Shoemaker, T. L. Sidery, X. Siemens, D. Sigg, D. Simakov, A. Singer, L. Singer, A. M. Sintes, G. R. Skelton, B. J. J. Slagmolen, J. Slutsky, J. R. Smith, M. R. Smith, R. J. E. Smith, N. D. Smith-Lefebvre, K. Somiya, B. Sorazu, F. C. Speirits, L. Sperandio, M. Stefszky, E. Steinert, J. Steinlechner, S. Steinlechner, S. Steplewski, A. Stochino, R. Stone, K. A. Strain, S. E. Strigin, A. S. Stroeer, R. Sturani, A. L. Stuver, T. Z. Summerscales, M. Sung, S. Susmithan, P. J. Sutton, B. Swinkels, G. Szeifert, M. Tacca, L. Taffarello, D. Talukder, D. B. Tanner, S. P. Tarabrin, R. Taylor, A. P. M. ter Braack, P. Thomas, K. A. Thorne, K. S. Thorne, E. Thrane, A. Thuering, C. Titsler, K. V. Tokmakov, C. Tomlinson, A. Toncelli, M. Tonelli, O. Torre, C. V. Torres, C. I. Torrie, E. Tournefier, F. Travasso, G. Traylor, M. Tse, D. Ugolini, H. Vahlbruch, G. Vajente, J. F. J. van den Brand, C. Van den Broeck, S. van der Putten, A. A. van Veggel, S. Vass, M. Vasuth, R. Vaulin, M. Vavoulidis, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, D. Verkindt, F. Vetrano, A. Vicere, A. E. Villar, J. -Y. Vinet, S. Vitale, H. Vocca, C. Vorvick, S. P. Vyatchanin, A. Wade, L. Wade, M. Wade, S. J. Waldman, L. Wallace, Y. Wan, M. Wang, X. Wang, A. Wanner, R. L. Ward, M. Was, M. Weinert, A. J. Weinstein, R. Weiss, T. Welborn, L. Wen, P. Wessels, M. West, T. Westphal, K. Wette, J. T. Whelan, S. E. Whitcomb, D. J. White, B. F. Whiting, K. Wiesner, C. Wilkinson, P. A. Willems, L. Williams, R. Williams, B. Willke, M. Wimmer, L. Winkelmann, W. Winkler, C. C. Wipf, A. G. Wiseman, H. Wittel, G. Woan, R. Wooley, J. Worden, J. Yablon, I. Yakushin, H. Yamamoto, K. Yamamoto, C. C. Yancey, H. Yang, D. Yeaton-Massey, S. Yoshida, M. Yvert, A. Zadrozny, M. Zanolin, J. -P. Zendri, F. Zhang, L. Zhang, C. Zhao, N. Zotov, M. E. Zucker, J. Zweizig

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   06(2013) ( 6 )  2013.06  [Refereed]

     View Summary

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

    DOI

    Scopus

    13
    Citation
    (Scopus)
  • First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, A. Capone, C. Carloganu, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, M. Ferri, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J-L. Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Hallewell, M. Hamal, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, J. Petrovic, P. Piattelli, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, D. F. E. Samtleben, A. Sanchez-Losa, P. Sapienza, J. Schnabel, F. Schoeck, J-P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, A. Trovato, B. Vallage, C. Vallee, V. Van Elewyck, M. Vecchi, P. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   03(2013) ( 3 )  2013.03  [Refereed]

     View Summary

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

    DOI

    Scopus

    20
    Citation
    (Scopus)
  • Expansion cone for the 3-inch PMTs of the KM3NeT optical modules

    S. Adrian-Martinez, M. Ageron, J. A. Aguilar, F. Aharonian, S. Aiello, A. Albert, M. Alexandri, F. Ameli, E. G. Anassontzis, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. Assis Jesus, J. -J. Aubert, R. Bakker, A. E. Ball, G. Barbarino, E. Barbarito, F. Barbato, B. Baret, M. de Bel, A. Belias, N. Bellou, E. Berbee, A. Berkien, A. Bersani, V. Bertin, S. Beurthey, S. Biagi, C. Bigongiari, B. Bigourdan, M. Billault, R. de Boer, H. Boer Rookhuizen, M. Bonori, M. Borghini, M. Bou-Cabo, B. Bouhadef, G. Bourlis, M. Bouwhuis, S. Bradbury, A. Brown, F. Bruni, J. Brunner, M. Brunoldi, J. Busto, G. Cacopardo, L. Caillat, D. Calvo Diaz-Aldagalan, A. Calzas, M. Canals, A. Capone, J. Carr, E. Castorina, S. Cecchini, A. Ceres, R. Cereseto, Th Chaleil, F. Chateau, T. Chiarusi, D. Choqueuse, P. E. Christopoulou, G. Chronis, O. Ciaffoni, M. Circella, R. Cocimano, F. Cohen, F. Colijn, R. Coniglione, M. Cordelli, A. Cosquer, M. Costa, P. Coyle, J. Craig, A. Creusot, C. Curtil, A. D'Amico, G. Damy, R. De Asmundis, G. De Bonis, G. Decock, P. Decowski, E. Delagnes, G. De Rosa, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti-Hasankiadeh, J. Drogou, D. Drouhin, F. Druillole, L. Drury, D. Durand, G. A. Durand, T. Eberl, U. Emanuele, A. Enzenhoefer, J. -P. Ernenwein, S. Escoffier, V. Espinosa, G. Etiope, P. Favali, D. Felea, M. Ferri, S. Ferry, V. Flaminio, F. Folger, A. Fotiou, U. Fritsch, D. Gajanana, R. Garaguso, G. P. Gasparini, F. Gasparoni, V. Gautard, F. Gensolen, K. Geyer, G. Giacomelli, I. Gialas, V. Giordano, J. Giraud, N. Gizani, A. Gleixner, C. Gojak, J. P. Gomez-Gonzalez, K. Graf, D. Grasso, A. Grimaldi, R. Groenewegen, Z. Guede, G. Guillard, F. Guilloux, R. Habel, G. Hallewell, H. van Haren, J. van Heerwaarden, A. Heijboer, E. Heine, J. J. Hernandez-Rey, B. Herold, M. van de Hoek, J. Hogenbirk, J. Hoessl, C. C. Hsu, M. Imbesi, A. Jamieson, P. Jansweijer, M. de Jong, F. Jouvenot, M. Kadler, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, M. Karolak, U. F. Katz, O. Kavatsyuk, P. Keller, Y. Kiskiras, R. Klein, H. Kok, H. Kontoyiannis, P. Kooijman, J. Koopstra, C. Kopper, A. Korporaal, P. Koske, A. Kouchner, S. Koutsoukos, I. Kreykenbohm, V. Kulikovskiy, M. Laan, C. La Fratta, P. Lagier, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, A. Leisos, D. Lenis, E. Leonora, H. Le Provost, G. Lim, C. D. Llorens, J. Lloret, H. Loehner, D. Lo Presti, P. Lotrus, F. Louis, F. Lucarelli, V. Lykousis, D. Malyshev, S. Mangano, E. C. Marcoulaki, A. Margiotta, G. Marinaro, A. Marinelli, O. Maris, E. Markopoulos, C. Markou, J. A. Martinez-Mora, A. Martini, J. Marvaldi, R. Masullo, G. Maurin, P. Migliozzi, E. Migneco, S. Minutoli, A. Miraglia, C. M. Mollo, M. Mongelli, E. Monmarthe, M. Morganti, S. Mos, H. Motz, Y. Moudden, G. Mul, P. Musico, M. Musumeci, Ch. Naumann, M. Neff, C. Nicolaou, A. Orlando, D. Palioselitis, K. Papageorgiou, A. Papaikonomou, R. Papaleo, I. A. Papazoglou, G. E. Pavalas, H. Z. Peek, J. Perkin, P. Piattelli, V. Popa, T. Pradier, E. Presani, I. G. Priede, A. Psallidas, C. Rabouille, C. Racca, A. Radu, N. Randazzo, P. A. Rapidis, P. Razis, D. Real, C. Reed, S. Reito, L. K. Resvanis, G. Riccobene, R. Richter, K. Roensch, J. Rolin, J. Rose, J. Roux, A. Rovelli, A. Russo, G. V. Russo, F. Salesa, D. Samtleben, P. Sapienza, J. -W. Schmelling, J. Schmid, J. Schnabel, K. Schroeder, J. -P. Schuller, F. Schussler, D. Sciliberto, M. Sedita, T. Seitz, R. Shanidze, F. Simeone, I. Siotis, V. Sipala, C. Sollima, S. Sparnocchia, A. Spies, M. Spurio, T. Staller, S. Stavrakakis, G. Stavropoulos, J. Steijger, Th. Stolarczyk, D. Stransky, M. Taiuti, A. Taylor, L. Thompson, P. Timmer, D. Tonoiu, S. Toscano, C. Touramanis, L. Trasatti, P. Traverso, A. Trovato, A. Tsirigotis, S. Tzamarias, E. Tzamariudaki, F. Urbano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, S. Viola, D. Vivolo, S. Wagner, P. Werneke, R. J. White, G. Wijnker, J. Wilms, E. De Wolf, H. Yepes, V. Zhukov, E. Zonca, J. D. Zornozap, J. Zuniga

    JOURNAL OF INSTRUMENTATION   8 ( T03006 )  2013.03  [Refereed]

     View Summary

    Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.

    DOI

    Scopus

    15
    Citation
    (Scopus)
  • Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    S. Adrian-Martinez, M. Ageron, J. A. Aguilar, F. Aharonian, S. Aiello, A. Albert, M. Alexandri, F. Ameli, E. G. Anassontzis, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. Assis Jesus, J-J Aubert, R. Bakke, A. E. Ball, G. Barbarino, E. Barbarito, F. Barbato, B. Baret, M. de Bel, A. Belias, N. Bellou, E. Berbee, A. Berkien, A. Bersani, V. Bertin, S. Beurthey, S. Biagi, C. Bigongiari, B. Bigourdan, M. Billault, R. de Boer, H. Boer Rookhuizen, M. Bonori, M. Borghini, H. M. Bou-Cabo, B. Bouhadef, G. Bourlis, M. Bouwhuis, S. Bradbury, A. Brown, F. Bruni, J. Brunner, M. Brunoldi, J. Busto, G. Cacopardo, L. Caillat, D. Calvo Diaz-Aldagalan, A. Calzas, M. Canals, A. Capone, J. Carr, E. Castorina, S. Cecchini, A. Ceres, R. Cereseto, Th. Chaleil, F. Chateau, T. Chiarusi, D. Choqueuse, P. E. Christopoulou, G. Chronis, O. Ciaffoni, M. Circella, R. Cocimano, F. Cohen, F. Colijn, R. Coniglione, M. Cordelli, A. Cosquer, M. Costa, P. Coyle, J. Craig, A. Creusot, C. Curtil, A. D'Amico, G. Damy, R. De Asmundis, G. De Bonis, G. Decock, P. Decowski, E. Delagnes, G. De Rosa, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti-Hasankiadeh, J. Drogou, D. Drouhin, F. Druillole, L. Drury, D. Durand, G. A. Durand, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P Ernenwein, S. Escoffier, V. Espinosa, G. Etiope, P. Favali, D. Felea, M. Ferri, S. Ferry, V. Flaminio, F. Folger, A. Fotiou, U. Fritsch, D. Gajanana, R. Garaguso, G. P. Gasparini, F. Gasparoni, V. Gautard, F. Gensolen, K. Geyer, G. Giacomelli, I. Gialas, V. Giordano, J. Giraud, N. Gizani, A. Gleixner, C. Gojak, J. P. Gomez-Gonzalez, K. Graf, D. Grasso, A. Grimaldi, R. Groenewegen, Z. Guede, G. Guillard, F. Guilloux, R. Habel, G. Hallewell, H. van Haren, J. van Heerwaarden, A. Heijboer, E. Heine, J. J. Hernandez-Rey, B. Herold, T. Hillebrand, M. van de Hoek, J. Hogenbirk, J. Hoessl, C. C. Hsu, M. Imbesi, A. Jamieson, P. Jansweijer, M. de Jong, F. Jouvenot, M. Kadler, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, M. Karolak, U. F. Katz, O. Kavatsyuk, P. Keller, Y. Kiskiras, R. Klein, H. Kok, H. Kontoyiannis, P. Kooijman, J. Koopstra, C. Kopper, A. Korporaal, P. Koske, A. Kouchner, S. Koutsoukos, I. Kreykenbohm, V. Kulikovskiy, M. Laan, C. La Fratta, P. Lagier, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, A. Leisos, D. Lenis, E. Leonora, H. Le Provost, G. Lim, C. D. Llorens, J. Lloret, H. Loehner, D. Lo Presti, P. Lotrus, F. Louis, F. Lucarelli, V. Lykousis, D. Malyshev, S. Mangano, E. C. Marcoulaki, A. Margiotta, G. Marinaro, A. Marinelli, O. Maris, E. Markopoulos, C. Markou, J. A. Martinez-Mora, A. Martini, J. Marvaldi, R. Masullo, G. Maurin, P. Migliozzi, E. Migneco, S. Minutoli, A. Miraglia, C. M. Mollo, M. Mongelli, E. Monmarthe, M. Morganti, S. Mos, H. Motz, Y. Moudden, G. Mul, P. Musico, M. Musumeci, Ch Naumann, M. Neff, C. Nicolaou, A. Orlando, D. Palioselitis, K. Papageorgiou, A. Papaikonomou, R. Papaleo, I. A. Papazoglou, G. E. Pavalas, H. Z. Peek, J. Perkin, P. Piattelli, V. Popa, T. Pradier, E. Presani, I. G. Priede, A. Psallidas, C. Rabouille, C. Racca, A. Radu, N. Randazzo, P. A. Rapidis, P. Razis, D. Real, C. Reed, S. Reito, L. K. Resvanis, G. Riccobene, R. Richter, K. Roensch, J. Rolin, J. Rose, J. Roux, A. Rovelli, A. Russo, G. V. Russo, F. Salesa, D. Samtleben, P. Sapienza, J-W Schmelling, J. Schmid, J. Schnabel, K. Schroeder, J-P Schuller, F. Schussler, D. Sciliberto, M. Sedita, T. Seitz, R. Shanidze, F. Simeone, I. Siotis, V. Sipala, C. Sollima, S. Sparnocchia, A. Spies, M. Spurio, T. Staller, S. Stavrakakis, G. Stavropoulos, J. Steijger, Th. Stolarczyk, D. Stransky, M. Taiuti, A. Taylor, L. Thompson, P. Timmer, D. Tonoiu, S. Toscano, C. Touramanis, L. Trasatti, P. Traverso, A. Trovato, A. Tsirigotis, S. Tzamarias, E. Tzamariudaki, F. Urbano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, S. Viola, D. Vivolo, S. Wagner, P. Werneke, R. J. White, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, V. Zhukov, E. Zonca, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   42   7 - 14  2013.02  [Refereed]

     View Summary

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km(3) of instrumented volume. The effect of a possible lower cutoff is also considered. (C) 2012 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    30
    Citation
    (Scopus)
  • 27aBF-2 Ashra-1 trigger readout calibration

    Aita Y., Kogure D., Kuze H., Learned J., Masuda M., Matsuno S., Morimoto Y., Motz H., Ogawa S., Sasaki M., Shibuya H., Aoki T., Sugiyama N., Takada T., Tsujikawa H., Watanabe Y., Asaoka Y., Abiko C., Binder P., Golden J., Hamilton J., Kanokohata C., Kimura T.

    Meeting Abstracts of the Physical Society of Japan   68 ( 0 ) 132 - 132  2013  [Refereed]

    DOI CiNii

  • SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J-J Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, A. Capone, C. Carloganu, J. Carr, S. Cecchini, Z. Charif, Ph Charvis, T. Chiarusi, M. Circella, R. Coniglione, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P Ernenwein, S. Escoffier, K. Fehn, P. Fermani, M. Ferri, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J-L Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, A. Gleixner, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Hallewell, M. Hamal, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, E. Leonora, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, M. Morganti, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, J. Petrovic, P. Piattelli, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, D. F. E. Samtleben, P. Sapienza, J. Schmid, J. Schnabel, J-P Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, A. Trovato, B. Vallage, C. Vallee, V. Van Elewyck, M. Vecchi, P. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPHYSICAL JOURNAL   760 ( 1 ) 10  2012.11  [Refereed]

     View Summary

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E-nu(-2). spectrum, these flux limits are at 1-10x10(-8) GeV cm(-2) s(-1) for declinations ranging from -90 degrees to 40 degrees. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.

    DOI

    Scopus

    149
    Citation
    (Scopus)
  • Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, M. Ferri, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J-L. Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graft, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, N. Morganti, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, D. F. E. Samtleben, P. Sapienza, F. Schoeck, J-P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, C. Vallee, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   36 ( 1 ) 204 - 210  2012.08  [Refereed]

     View Summary

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background.
    An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented. (C) 2012 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    27
    Citation
    (Scopus)
  • The positioning system of the ANTARES Neutrino Telescope

    S. Adrian-Martinez, M. Ageron, J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, A. Bigi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, P. Coyle, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J. -P. Ernenwein, S. Escoffier, P. Fermani, M. Ferri, V. Flaminio, F. Folger, U. Fritsch, J. -L. Fuda, S. Galata, P. Gay, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Keller, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, D. Lefevre, A. Le Van Suu, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, L. Moscoso, H. Motz, M. Neff, E. Nezri, V. Niess, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, D. Real, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, D. F. E. Samtleben, F. Schoeck, J. -P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    JOURNAL OF INSTRUMENTATION   7 ( 8 ) T08002  2012.08  [Refereed]

     View Summary

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

    DOI

    Scopus

    55
    Citation
    (Scopus)
  • Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope ANTARES Collaboration

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, T. Astraatmadja, J. -J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, A. Capone, C. Carloganu, J. Carr, S. Cecchini, Z. Charif, Ph Charvis, T. Chiarusi, M. Circella, R. Coniglione, L. Core, H. Costantini, P. Coyle, A. Creusot, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J. -P. Ernenwein, S. Escoffier, K. Fehn, P. Fermani, M. Ferri, S. Ferry, V. Flaminio, F. Folger, U. Fritsch, J. -L. Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, A. Gleixner, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Hallewell, M. Hamal, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, G. Lambard, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, J. Petrovic, R. Piattelli, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, D. F. E. Samtleben, A. Sanchez-Losa, P. Sapienza, J. Schmid, J. Schnabel, F. Schoeck, J. -P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th Stolarczyk, M. Taiuti, C. Tamburini, A. Trovato, B. Vallage, C. Vallee, V. Van Elewyck, M. Vecchi, R. Vernin, E. Visser, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    PHYSICS LETTERS B   714 ( 2-5 ) 224 - 230  2012.08  [Refereed]

     View Summary

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Delta m(32)(2) = (3.1 +/- 0.9) . 10(-3) eV(2) is obtained, in good agreement with the world average value. (C) 2012 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    79
    Citation
    (Scopus)
  • A method for detection of muon induced electromagnetic showers with the ANTARES detector

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. J. Auberth, B. Baret, S. Basa, V. Bertin, S. Biagl, A. Bigi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, P. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J. P. Ernenwein, S. Escoffier, P. Fermani, M. Ferri, V. Flaminio, F. Folger, U. Fritsch, J. L. Fuda, S. Galata, P. Gay, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Koppe, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J. P. Schuller, F. Schuessler, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, T. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   675   56 - 62  2012.05  [Refereed]

     View Summary

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated. (C) 2012 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    4
    Citation
    (Scopus)
  • Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

    S. Adrian-Martinez, J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, H. Costantini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J. -P. Ernenwein, S. Escoffier, P. Fermani, M. Ferri, V. Flaminio, F. Folger, U. Fritsch, J. -L. Fuda, S. Galata, P. Gay, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J-P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   35 ( 10 ) 634 - 640  2012.05  [Refereed]

     View Summary

    Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 x 10-(17) and 8.9 x 10(-17) CM-2 s(-1) sr(-1) for monopoles with velocity beta &gt;= 0.625. (c) 2012 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    54
    Citation
    (Scopus)
  • Measurement of the group velocity of light in sea water at the ANTARES site

    S. Adrian-Martinez, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J-J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, A. Bigi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, H. Costantini, P. Coyle, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, P. Fermani, M. Ferri, V. Flaminio, F. Folger, U. Fritsch, J-L Fuda, S. Galata, P. Gay, K. Geyer, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, J. E. McMillan, A. Meli, T. Montaruli, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, D. F. E. Samtleben, P. Sapienza, F. Schoeck, J-P. Schuller, F. Schuessleraf, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, L. F. Thompson, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   35 ( 9 ) 552 - 557  2012.04  [Refereed]

     View Summary

    The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements. (C) 2012 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    7
    Citation
    (Scopus)
  • The ANTARES telescope neutrino alert system

    M. Ageron, J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, A. Bigi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J-P. Ernenwein, S. Escoffier, P. Fermani, M. Ferri, V. Flaminio, F. Folger, U. Fritsch, J-L. Fuda, S. Galata, P. Gay, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J-P. Schuller, F. Schuessler, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   35 ( 8 ) 530 - 536  2012.03  [Refereed]

     View Summary

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy. (C) 2011 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    66
    Citation
    (Scopus)
  • 13pSN-10 Tau Neutrino Search with Ashra

    Abiko C., Kogure D., Kuze H., Learned J., Masuda M., Matsuno S, Morimoto Y., Motz H., Ogawa S., Sasaki M., Shibuya H., Aita Y, Sugiyama N., Takada T., Tsujikawa H., Watanabe Y., Aoki T, Asaoka Y., Binder P., Goldman J., Hamilton J, Kanokohata C., Kimura T.

    Meeting Abstracts of the Physical Society of Japan   67 ( 0 ) 113 - 113  2012  [Refereed]

    DOI CiNii

  • 13pSN-9 Observation with Ashra trigger system

    Aita Y., Kimura T., Kogure D., Kuze H., Learned J., Masuda M., Matsuno S., Morimoto Y., Motz H., Ogawa S., Ota K., Aoki T, Sasaki M., Shibuya H., Sugiyama N., Takada T., Tsujikawa H., Watanabe Y., Asaoka Y., Abiko C, Asou J., Binder P, Golden J., Hamilton J., Kanokohata C

    Meeting Abstracts of the Physical Society of Japan   67 ( 0 ) 113 - 113  2012  [Refereed]

    DOI CiNii

  • FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    S. Adrian-Martinez, J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, B. Baret, S. Basa, V. Bertin, S. Biagi, A. Bigi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, B. Bouhou, M. C. Bouwhuis, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Z. Charif, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, A. Enzenhoefer, J. -P. Ernenwein, S. Escoffier, P. Fermani, M. Ferri, V. Flaminio, F. Folger, U. Fritsch, J. -L. Fuda, S. Galata, P. Gay, G. Giacomelli, V. Giordano, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, J. Hartman, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, O. Kalekin, A. Kappes, U. Katz, O. Kavatsyuk, P. Kooijman, C. Kopper, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lattuada, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Meli, T. Montaruli, L. Moscoso, H. Motz, M. Neff, E. Nezri, D. Palioselitis, G. E. Pavalas, K. Payet, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, C. Richardt, R. Richter, C. Riviere, A. Robert, K. Roensch, A. Rostovtsev, J. Ruiz-Rivas, M. Rujoiu, G. V. Russo, F. Salesa, D. F. E. Samtleben, P. Sapienza, F. Schoeck, J. -P. Schuller, F. Schuessler, T. Seitz, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, A. Sanchez-Losa, M. Taiuti, C. Tamburini, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, S. Wagner, G. Wijnker, J. Wilms, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPHYSICAL JOURNAL LETTERS   743 ( 1 ) 6  2011.12  [Refereed]

     View Summary

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 +/- 0.1 deg. The neutrino flux sensitivity is 7.5 x 10(-8)(E(v)/GeV)(-2) GeV(-1) s(-1) cm(-2) for the part of the sky that is always visible (delta &lt; -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

    DOI

    Scopus

    52
    Citation
    (Scopus)
  • Contributions to the 32nd International Cosmic Ray Conference (ICRC 2011) by the ANTARES collaboration

    Adrián-Martínez, S, Aguilar, J. A, Samarai, I. Al, Albert, A, André, M, Anghinolfi, M, Anton, G, Anvar, S, Ardid, M, Assis Jesus, A. C, Astraatmadja, T, Aubert, J-J, Baret, B, Basa, S, Bertin, V, Biagi, S, Bigi, A, Bigongiari, C, Bogazzi, C, Bou-Cabo, M, Bouhou, B, Bouwhuis, M. C, Brunner, J, Busto, J, Camarena, F, Capone, A, Carloganu, C, Carminati, G, Carr, J, Cecchini, S, Charif, Z, Charvis, Ph, Chiarusi, T, Circella, M, Costantini, H, Coyle, P, Creusto, A

    ARXIV   32nd International Cosmic Ray Conference (ICRC 2011)  2011.12

    DOI

  • ANTARES: The first undersea neutrino telescope

    M. Ageron, J. A. Aguilar, I. Al Samarai, A. Albert, F. Ameli, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, K. Arnaud, E. Aslanides, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, R. Auer, E. Barbarito, B. Baret, S. Basa, M. Bazzotti, Y. Becherini, J. Beltramelli, A. Bersani, V. Bertin, S. Beurthey, S. Biagi, C. Bigongiari, M. Billault, R. Blaes, C. Bogazzi, N. de Botton, M. Bou-Cabo, B. Boudahef, M. C. Bouwhuis, A. M. Brown, J. Brunner, J. Busto, L. Caillat, A. Calzas, F. Camarena, A. Capone, L. Caponetto, C. Carloganu, G. Carminati, E. Carmona, J. Carr, P. H. Carton, B. Cassano, E. Castorina, S. Cecchini, A. Ceres, Th Chaleil, Ph Charvis, P. Chauchot, T. Chiarusi, M. Circella, C. Compere, R. Coniglione, X. Coppolani, A. Cosquer, H. Costantini, N. Cottini, P. Coyle, S. Cuneo, C. Curtil, C. D'Amato, G. Damy, R. van Dantzig, G. De Bonis, G. Decock, M. P. Decowski, I. Dekeyser, E. Delagnes, F. Desages-Ardellier, A. Deschamps, J. -J. Destelle, F. Di Maria, B. Dinkespiler, C. Distefano, J. -L. Dominique, C. Donzaud, D. Dornic, Q. Dorosti, J. -F. Drogou, D. Drouhin, F. Druillole, D. Durand, R. Durand, T. Eberl, U. Emanuele, J. J. Engelen, J. -P. Ernenwein, S. Escoffier, E. Falchini, S. Favard, F. Fehr, F. Feinstein, M. Ferri, S. Ferry, C. Fiorello, V. Flaminio, F. Folger, U. Fritsch, J. -L. Fuda, S. Galata, S. Galeotti, P. Gay, F. Gensolen, G. Giacomelli, C. Gojak, J. P. Gomez-Gonzalez, Ph. Goret, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, B. Hartmann, A. J. Heijboer, E. Heine, Y. Hello, S. Henry, J. J. Hernandez-Rey, B. Herold, J. Hoessl, J. Hogenbirk, C. C. Hsu, J. R. Hubbard, M. Jaquet, M. Jaspers, M. de Jong, D. Jourde, M. Kadler, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, T. Karg, S. Karkar, M. Karolak, U. Katz, P. Keller, P. Kestener, E. Kok, H. Kok, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, A. Kruijer, S. Kuch, V. Kulikovskiy, D. Lachartre, H. Lafoux, P. Lagier, R. Lahmann, C. Lahonde-Hamdoun, P. Lamare, G. Lambard, J-C Languillat, G. Larosa, J. Lavalle, Y. Le Guen, H. Le Provost, A. LeVanSuu, D. Lefevre, T. Legou, G. Lelaizant, C. Leveque, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, F. Lucarelli, V. Lyashuk, P. Magnier, S. Mangano, A. Marcel, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, R. Masullo, F. Mazeas, A. Mazure, A. Meli, M. Melissas, E. Migneco, M. Mongelli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, M. Musumeci, C. Naumann, M. Naumann-Godo, M. Neff, V. Niess, G. J. L. Nooren, J. E. J. Oberski, C. Olivetto, N. Palanque-Delabrouille, D. Patioselitis, R. Papaleo, G. E. Pavalas, K. Payet, P. Payre, H. Peek, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, Y. Piret, J. Poinsignon, V. Popa, T. Pradier, E. Presani, G. Prono, C. Racca, G. Raia, J. van Randwijk, D. Real, C. Reed, F. Rethore, P. Rewiersma, G. Riccobene, C. Richardt, R. Richter, J. S. Ricol, V. Rigaud, V. Roca, K. Roensch, J. -F. Rolin, A. Rostovtsev, A. Rottura, J. Roux, M. Rujoiu, M. Ruppi, G. V. Russo, F. Salesa, K. Salomon, P. Sapienza, F. Schmitt, F. Schoeck, J. -P. Schuller, F. Schuessler, D. Sciliberto, R. Shanidze, E. Shirokov, F. Simeone, A. Sottoriva, A. Spies, T. Spona, M. Spurio, J. J. M. Steijger, Th Stolarczyk, K. Streeb, L. Sulak, M. Taiuti, C. Tamburini, C. Tao, L. Tasca, G. Terreni, D. Tezier, S. Toscano, F. Urbano, P. Valdy, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, G. Venekamp, B. Verlaat, P. Vernin, E. Virique, G. de Vries, R. van Wijk, G. Wijnker, G. Wobbe, E. de Wolf, Y. Yakovenko, H. Yepes, D. Zaborov, H. Zaccone, J. D. Zornoza, J. Zuniga

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   656 ( 1 ) 11 - 38  2011.11  [Refereed]

     View Summary

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. (C) 2011 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    602
    Citation
    (Scopus)
  • Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    H. van Haren, I. Taupier-Letage, J. A. Aguilar, A. Albert, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, M. Bou-Cabo, M. C. Bouwhuis, A. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, G. Carminati, J. Carr, D. Castel, E. Castorina, V. Cavasinni, S. Cecchini, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, U. Emanuele, J. -P. Ernenwein, S. Escoffier, F. Fehr, V. Flaminio, K. Fratini, U. Fritsch, J. -L. Fuda, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, J. Hoessl, M. de Jong, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, R. Lahmann, P. Lamare, G. Lambard, G. Larosa, H. Laschinsky, D. Lefevre, G. Lelaizant, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, K. Lyons, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, G. Maurin, A. Mazure, M. Melissas, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, R. Ostasch, G. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, R. Pillet, V. Popa, T. Pradier, E. Presani, C. Racca, A. Radu, C. Reed, G. Riccobene, C. Richardt, M. Rujoiu, G. V. Russo, F. Salesa, F. Schoeck, J. -P. Schuller, R. Shanidze, F. Simeone, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS   58 ( 8 ) 875 - 884  2011.08  [Refereed]

     View Summary

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s(-1) in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s(-1). These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'. (C) 2011 Elsevier Ltd. All rights reserved.

    DOI

    Scopus

    22
    Citation
    (Scopus)
  • A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, M. C. Bouwhuis, A. M. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, J. -P. Ernenwein, S. Escoffier, F. Fehr, V. Flaminio, U. Fritsch, J. -L. Fuda, S. Galata, P. Gay, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Mazure, A. Meli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, D. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, N. Picot-Clemente, C. Picq, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, R. Richter, A. Rostovtsev, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J. -P. Schuller, R. Shanidze, F. Simeone, A. Spiess, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   34 ( 9 ) 652 - 662  2011.04  [Refereed]

     View Summary

    An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data. (C) 2011 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    106
    Citation
    (Scopus)
  • Time calibration of the ANTARES neutrino telescope

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. J. Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, M. Bou-Cabo, M. C. Bouwhuis, A. M. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Ph. Charvis, T. Chiarusi, M. Circella, H. Costantini, N. Cottini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, U. Emanuele, J. P. Ernenwein, S. Escoffier, F. Fehr, V. Flaminio, U. Fritsch, J. L. Fuda, S. Galata, P. Gay, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Mazure, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, D. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienzap, F. Schoeck, J. P. Schuller, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   34 ( 7 ) 539 - 549  2011.02  [Refereed]

     View Summary

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of similar to 1 ns. The methods developed to attain this level of precision are described. (C) 2010 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    101
    Citation
    (Scopus)
  • AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, R. Auer, E. Barbarito, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, M. Bou-Cabo, M. C. Bouwhuis, A. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, B. Cassano, E. Castorina, V. Cavasinni, S. Cecchini, A. Ceres, Ph. Charvis, T. Chiarusi, N. Chon Sen, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, U. Emanuele, J. -P. Ernenwein, S. Escoffier, F. Fehr, C. Fiorello, V. Flaminio, U. Fritsch, J. -L. Fuda, P. Gay, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, A. J. Heijboer, E. Heine, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, M. de Jong, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Keller, P. Kooijman, C. Kopper, A. Kouchneri, W. Kretschmer, R. Lahmann, P. Lamare, G. Lambard, G. Larosa, H. Laschinsky, H. Le Provost, D. Lefevre, G. Lelaizant, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Louis, F. Lucarelli, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Mazure, M. Mongelli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, R. Ostasch, D. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, N. Picot-Clemente, C. Picq, V. Popa, T. Pradier, E. Presani, C. Racca, A. Radu, C. Reed, G. Riccobene, C. Richardt, M. Rujoiu, M. Ruppi, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J. -P. Schuller, R. Shanidze, F. Simeone, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   626   128 - 143  2011.01  [Refereed]

     View Summary

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around - 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions. (C) 2010 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    76
    Citation
    (Scopus)
  • Search for a diffuse flux of high-energy nu(mu) with the ANTARES neutrino telescope

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Andre, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, C. Bogazzi, M. Bou-Cabo, M. C. Bouwhuis, A. M. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, S. Cecchini, Ph Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Donzaud, D. Dornic, Q. Dorosti, D. Drouhin, T. Eberl, U. Emanuele, J. -P. Ernenwein, S. Escoffier, F. Fehr, V. Flaminio, F. Folger, U. Fritsch, J. -L. Fuda, S. Galata, P. Gay, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, C. C. Hsu, M. de Jong, M. Kadler, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, V. Kulikovskiy, R. Lahmann, P. Lamare, G. Larosa, D. Lefevre, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Mazure, A. Meli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, D. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, V. Popa, T. Pradier, E. Presani, C. Racca, C. Reed, G. Riccobene, C. Richardt, K. Roensch, A. Rostovtsev, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, V. F. Schoeck, J. -P. Schuller, R. Shanidze, F. Simeone, A. Spies, M. Spurio, J. J. M. Steijger, Th Stolarczyk, M. Taiuti, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    PHYSICS LETTERS B   696 ( 1-2 ) 16 - 22  2011.01  [Refereed]

     View Summary

    A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83 x 2 pi) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E-2 flux spectrum, a 90% c.l. upper limit on the diffuse nu(mu) flux of E-2 Phi(90%) = 5.3 x 10(-8) GeV cm(-2) s(-1) sr(-1) in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected. (C) 2010 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    89
    Citation
    (Scopus)
  • Position calibration for the future KM3NeT detector

    Holger Motz

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   623 ( 1 ) 402 - 404  2010.11  [Refereed]

     View Summary

    Deep-sea neutrino telescopes consist of an array of photomultipliers to detect Cherenkov light emitted by neutrino-induced muons and particle showers in the surrounding sea water, allowing for reconstruction of the neutrino direction from position and timing of the Cherenkov photons. Since the photomultipliers are in most cases mounted on flexible structures, e.g. lines, and move with the sea current, a positioning system is required to determine the precise location of each sensor. The positioning system of the ANTARES neutrino telescope is based on acoustic triangulation using hydrophones mounted along the lines in combination with tiltmeters and compasses and provides centimetre precision alignment. For the future KM3NeT detector an Optical Module with integrated Piezo sensors for position calibration is proposed as a cost-effective solution. The performance of this system is tested with several sensors of the AMADEUS project, which is integrated in ANTARES to study the background for acoustic detection of highest energy neutrinos. (C) 2010 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    1
    Citation
    (Scopus)
  • Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    J. A. Aguilar, A. Albert, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubertg, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Berting, S. Biagi, C. Bigongiari, M. Bou-Cabo, M. C. Bouwhuis, A. M. Brown, J. Brunnerg, J. Busto, F. Camarena, A. Capone, G. Carminati, J. Carr, D. Castel, E. Castorina, V. Cavasinni, S. Cecchini, Ph. Charvis, T. Chiarusi, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, U. Emanuele, J. -P. Ernenweing, S. Escoffierg, F. Fehr, V. Flaminio, K. Fratini, U. Fritsch, J. -L. Fuda, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjiang, G. Hallewellg, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, J. Hoessl, M. de Jong, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, R. Lahmann, P. Lamare, G. Lambard, G. Larosa, H. Laschinsky, D. Lefevre, G. Lelaizant, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, K. Lyons, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, G. Maurinu, A. Mazure, M. Melissas, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, R. Ostasch, D. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, R. Pillet, V. Popa, T. Pradier, E. Presani, C. Racca, A. Radu, C. Reed, C. Richardt, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J. -P. Schuller, R. Shanidze, F. Simeone, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, M. Taiuti, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   34 ( 3 ) 179 - 184  2010.10  [Refereed]

     View Summary

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented. (C) 2010 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    66
    Citation
    (Scopus)
  • Performance of the front-end electronics of the ANTARES neutrino telescope

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J-J Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, M. Bou-Cabo, M. C. Bouwhuis, A. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, L. Caponetto, C. Carloganu, G. Carminati, J. Carr, E. Castorina, V. Cavasinni, S. Cecchini, Th Chaleil, Charvis, T. Chiarusi, N. Chon Sen, M. Circella, H. Costantini, N. Cottini, P. Coyle, C. Curtil, G. De Bonis, N. de Botton, I. Dekeyser, E. Delagnes, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, F. Druillole, T. Eberl, U. Emanuele, J-P Ernenwein, S. Escoffier, E. Falchini, F. Fehr, F. Feinstein, V. Flaminio, J. Fopma, K. Fratini, U. Fritsch, J-L Fuda, P. Gay, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, C. Hoffmann, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, M. de Jong, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, D. Lachartre, H. Lafoux, R. Lahmann, P. Lamare, G. Lambard, G. Larosa, H. Laschinsky, H. Le Provost, A. Le Van Suu, D. Lefevre, T. Legou, G. Lelaizant, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Mazure, E. Monmarthe, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, Ch Olivetto, R. Ostasch, D. Palioselitis, G. E. Pavala, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, J-P Pineau, J. Poinsignon, V. Popa, T. Pradier, E. Presani, C. Racca, A. Radu, C. Reed, F. Rethore, G. Riccobene, C. Richardt, M. Rujoiu, G. V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J. P. Schuller, R. Shanidze, F. Simeone, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, G. Vannoni, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   622 ( 1 ) 59 - 73  2010.10  [Refereed]

     View Summary

    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated. (C) 2010 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    56
    Citation
    (Scopus)
  • Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    J. A. Aguilar, I. Al Samarai, A. Albert, M. Anghinolfi, G. Anton, S. Anvar, M. Ardid, A. C. Assis Jesus, T. Astraatmadja, J. -J. Aubert, R. Auer, B. Baret, S. Basa, M. Bazzotti, V. Bertin, S. Biagi, C. Bigongiari, M. Bou-Cabo, M. C. Bouwhuis, A. Brown, J. Brunner, J. Busto, F. Camarena, A. Capone, C. Carloganu, G. Carminati, J. Carr, E. Castorina, V. Cavasinni, S. Cecchini, Ph. Charvis, T. Chiarusi, N. Chon Sen, M. Circella, R. Coniglione, H. Costantini, N. Cottini, P. Coyle, C. Curtil, G. De Bonis, M. P. Decowski, I. Dekeyser, A. Deschamps, C. Distefano, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, U. Emanuele, J. -P. Ernenwein, S. Escoffier, F. Fehr, V. Flaminio, K. Fratini, U. Fritsch, J. -L. Fuda, P. Gay, G. Giacomelli, J. P. Gomez-Gonzalez, K. Graf, G. Guillard, G. Halladjian, G. Hallewell, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, B. Herold, J. Hoessl, M. de Jong, N. Kalantar-Nayestanaki, O. Kalekin, A. Kappes, U. Katz, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, R. Lahmann, P. Lamare, G. Lambard, G. Larosa, H. Laschinsky, D. Lefevre, G. Lelaizant, G. Lim, D. Lo Presti, H. Loehner, S. Loucatos, F. Lucarelli, S. Mangano, M. Marcelin, A. Margiotta, J. A. Martinez-Mora, A. Mazure, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, C. Naumann, M. Neff, R. Ostasch, G. Palioselitis, G. E. Pavalas, P. Payre, J. Petrovic, P. Piattelli, N. Picot-Clemente, C. Picq, R. Pillet, V. Popa, T. Pradier, E. Presani, C. Racca, A. Radu, C. Reed, C. Richardt, M. Rujoiu, V. Russo, F. Salesa, P. Sapienza, F. Schoeck, J. -P. Schuller, R. Shanidze, F. Simeone, M. Spurio, J. J. M. Steijger, Th. Stolarczyk, C. Tamburini, L. Tasca, S. Toscano, B. Vallage, V. Van Elewyck, M. Vecchi, P. Vernin, G. Wijnker, E. de Wolf, H. Yepes, D. Zaborov, J. D. Zornoza, J. Zuniga

    ASTROPARTICLE PHYSICS   33 ( 2 ) 86 - 90  2010.03  [Refereed]

     View Summary

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of K-40 and the bioluminescence in the sea water. The K-40 background is used to calibrate the efficiency of the photo-multiplier tubes. (C) 2009 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    39
    Citation
    (Scopus)
  • INDIRECT SEARCH FOR DARK MATTER WITH THE ANTARES NEUTRINO TELESCOPE

    H. Motz

    DARK MATTER IN ASTROPHYSICS AND PARTICLE PHYSICS (DARK 2009)   Proceedings of the 7th International Heidelberg Conference on Dark 2009   504 - 517  2010  [Refereed]

     View Summary

    ANTARES (Astronomy with a Neutrino Telescope arid Abyss environmental RESearch) is currently the largest neutrino detector on the Northern Hemisphere. The detector consists of twelve lines, carrying 885 ten-inch photomultipliers in total, placed at a depth of about 2480 meters in the Mediterranean Sea near Toulon, France. The PMTs detect Cherenkov light emitted by muons from neutrino charged current interactions in the surrounding seawater and the rock below. The neutrinos momentum is transferred to the muons allowing for reconstruction of the neutrinos direction. The goals of ANTARES are among others the search for astrophysical neutrino point sources and for neutrinos produced in self-annihilation of dark matter particles. A likely source of the latter type of neutrino emission would be the Sun, where dark matter particles from the galactic halo are expected to accumulate. ANTARES is taking data with its full twelve line configuration since May 2008, and has been before in a five and ten line setup for more than a year. First results on the search for dark matter annihilation in the Sun, and their interpretation in the framework of mSugra are presented, as well as sensitivity studies on Dark Matter search with the full ANTARES detector and the future large undersea KM3NeT neutrino telescope.

    DOI

  • SEARCH FOR DARK MATTER WITH THE ANTARES NEUTRINO TELESCOPE

    H. Motz

    CRAL-IPNL: DARK ENERGY AND DARK MATTER: OBSERVATIONS, EXPERIMENTS AND THEORIES   36   305 - 310  2009  [Refereed]

     View Summary

    ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RESearch) is the largest neutrino detector currently operating in the Northern hemisphere. The detection principle relies on the observation of Cerenkov light emitted by muons resulting from charged current neutrino interactions in the water surrounding the detector and the seafloor below. The detector, which was completed in May 2008, consists of twelve lines (each housing 75 photomultipliers), placed at a depth of about 2480 meters 40 km off the coast of Toulon., France. The telescope is built to search for astrophysical neutrino point sources and for neutrinos created in self-annihilation of Dark-Matter particles. A likely source of such neutrino emission would be the Sun, where Dark Matter particles are expected to accumulate. Predictions of the neutrino flux originating from the Sun have been made based on the minimal Supergravity (mSugra) model including the effect of neutrino oscillations. Within mSugra the lightest supersymmetric particle, if a neutralino, is a possible candidate for cold Dark Matter. Using the general features of ANTARES in the energy range from 10 GeV to 400 GeV a prediction for exclusion limits for three years of datataking has been calculated.

    DOI

    Scopus

  • Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    M. Ageron, J. A. Aguilar, A. Albert, F. Ameli, M. Anghinolfi, G. Anton, S. Anvar, F. Ardellier-Desages, E. Aslanides, J. J. Aubert, R. Auer, E. Barbarito, S. Basa, M. Battaglieri, M. Bazzotti, Y. Becherini, N. Bethoux, J. Beltramelli, V. Bertin, A. Bigi, M. Billault, R. Blaes, N. de Botton, M. C. Bouwhuis, R. Bruijn, J. Brunner, G. F. Burgio, J. Busto, F. Cafagna, L. Caillat, A. Calzas, A. Capone, L. Caponetto, E. Carmona, J. Carr, D. Castel, E. Castorina, V. Cavasinni, S. Ceechini, A. Ceres, P. Charvis, P. Chauchot, T. Chiarusi, M. Circella, J. Y. Coail, C. Colnard, C. Compere, R. Coniglione, N. Cottini, P. Coyle, S. Cuneo, A. -S. Cussatlegras, G. Damy, R. van Dantzig, G. DeBonis, C. De Marzo, R. De Vita, I. Dekeyser, E. Delagnes, D. Denans, A. Deschamps, J. -X. Dessa, J. -J. Destelle, B. Dinkespieler, C. Distefano, C. Donzaud, J-F. Drogou, F. Druillole, D. Durand, J. -P. Ernenwein, S. Escoffier, E. Falchini, S. Favard, F. Fehr, F. Feinstein, C. Florello, V. Flaminio, K. Fratini, J. -L. Fuda, S. Galeotti, J. -M. Gallone, G. Giacomelli, N. Girard, C. Gojak, Ph. Goret, K. Graf, F. Guilloux, G. Hallewell, M. N. Harakeh, B. Hartmann, A. Heijboer, E. Heine, Y. Hello, J. J. Hernandez-Rey, J. Hoessl, C. Hoffman, J. Hogenbirk, J. R. Hubbard, M. Jaquet, M. Jaspers, M. de Jong, F. Jouvenot, N. Kalantar-Nayestanaki, A. Kappes, T. Karg, U. Katz, P. Keller, J. P. Kneib, E. Kok, H. Kok, P. Kooijman, C. Kopper, A. Kouchner, W. Kretschmer, A. Kruijer, S. Kuch, P. Lagier, R. Lahmann, G. Lamanna, P. Lamare, G. Lambard, J. C. Languillat, H. Laschinsky, J. Lavalle, Y. Le Guen, H. Le Provost, A. Le Van Suu, D. Lefevre, T. Legou, G. Lelaizant, G. Lim, D. Lo Presti, G. Loaec, H. Loehner, S. Loucatos, F. Louis, F. Lucarelli, V. Lyashuk, S. Mangano, M. Marcelin, A. Margiotta, R. Masullo, F. Mazeas, A. Mazure, R. Megna, M. Melissas, E. Migneco, M. Mongelli, T. Montaruli, M. Morganti, L. Moscoso, H. Motz, M. Musumeci, C. Naumann, M. Naumann-Godo, V. Niess, A. Noble, C. Olivetto, R. Ostasch, N. Palanque-Delabrouille, P. Payre, H. Z. Peek, A. Perez, C. Petta, P. Piattelli, R. Pillet, J. -P. Pineau, J. Poinsignon, V. Popa, T. Pradier, C. Racca, N. Randazzo, J. van Randwijk, D. Real, M. Regnier, B. van Rens, F. Rethore, P. Rewiersma, G. Riccobene, V. Rigaud, M. Ripani, V. Roca, C. Roda, J. F. Rolin, A. Rostovtsev, J. Roux, M. Ruppi, G. V. Russo, G. Rusydi, F. Salesa, K. Salomon, P. Sapienza, F. Schmitt, J. -P. Schuller, R. Shanidze, I. Sokalski, T. Spona, M. Spurio, G. van der Steenhoven, T. Stolarczyk, K. Streeb, L. Sulak, M. Taiuti, C. Tamburini, C. Tao, L. Tasca, G. Terreni, F. Urbano, P. Valdy, V. Valente, B. Vallage, G. Vaudaine, G. Venekamp, B. Verlaat, P. Vernin, R. van Wijk, G. Wijnker, G. Wobbe, E. de Wolf, A. -F. Yao, D. Zaborov, H. Zaccone, J. D. Zornoza, J. Zuniga

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   581 ( 3 ) 695 - 708  2007.11  [Refereed]

     View Summary

    full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented. (c) 2007 Elsevier B.V. All rights reserved.

    DOI

    Scopus

    16
    Citation
    (Scopus)

▼display all

Presentations

  • Investigating the Properties of Astrophysical Cosmic-ray Sources based on the CALET Electron+Positron Spectrum

    Holger Motz

    JPS annual meeting 2023 

    Presentation date: 2023.09

  • Dark Matter Limits from the CALET Electron+Positron Spectrum with Individual Astrophysical Source Background

    Holger Motz for the CALET Collaboration

    38th International Cosmic Ray Conference (ICRC2023) 

    Presentation date: 2023.08

  • A Cosmic-Ray Propagation Model based on Measured Nuclei Spectra

    Holger Motz

    38th International Cosmic Ray Conference (ICRC2023) 

    Presentation date: 2023.07

    Event date:
    2023.07
     
     
  • Interpretation of the CALET Electron+Positron Spectrum by Astrophysical Sources

    Holger Motz for the CALET collaboration

    38th International Cosmic Ray Conference (ICRC2023) 

    Presentation date: 2023.07

    Event date:
    2023.07
     
     
  • Individual Astrophysical Sources as Background for Dark Matter Search with CALET

    Holger Motz

    JPS spring meeting 2023 

    Presentation date: 2023.03

  • Constraining the Dark Matter Parameter Space with Cosmic Ray Data from Space-based Detectors

    Holger Motz  [Invited]

    DM3 - Deep insights and Multiple strategies for Deciphering the Mystery of Dark Matter 

    Presentation date: 2022.09

  • A Model for Propagation of Cosmic Rays from Nuclei Spectra Measurements

    Holger Motz

    JPS autumn meeting Okayama 

    Presentation date: 2022.09

  • Constraints on Heavy Dark Matter AnnConstraints on Heavy Dark Matter Annihilation and Decay from Electron and Positron Cosmic Ray Spectraihilation and Decay from Electron and Positron Cosmic Ray Spectra

    Holger Motz

    14th Conference on the Identification of Dark Matter (IDM2022) 

    Presentation date: 2022.07

  • Indirect Search for Heavy Dark Matter with CALET

    Holger Motz

    JPS annual meeting 2022 

    Presentation date: 2022.03

  • Extending Dark Matter Limits from Electron and Positron Cosmic Rays to the TeV-region

    Holger Motz

    Kashiwa Dark Matter Symposium 2021 

    Presentation date: 2021.11

    Event date:
    2021.11
    -
    2021.12
  • Search for Signatures of Nearby Supernova Remnants with CALET

    Holger Motz for the CALET Collaboration

    JPS autumn meeting 2021 

    Presentation date: 2021.09

  • Investigating the Vela SNR’s Emission of Electron Cosmic Rays with CALET at the International Space Station

    Holger Motz for the CALET collaboration

    37th International Cosmic Ray Conference (ICRC 2021) 

    Presentation date: 2021.07

    Event date:
    2012.07
    -
    2021.07
  • Constraints on the Emission of Electron Cosmic Rays by the Vela SNR from CALET Data

    Holger Motz

    JPS annual meeting 2021 

    Presentation date: 2021.03

  • Dark matter from a flavor dependent gauge symmetry model and its signatures in cosmic rays

    Holger Motz, Hiroshi Okada, Yoichi Asaoka, Kazunori Kohri

    Kashiwa Dark Matter Symposium 2020 

    Presentation date: 2020.11

  • Cosmic-ray signatures of dark matter from a flavor dependent gauge symmetry model

    Holger Motz, Hiroshi Okada, Yoichi Asaoka, Kazunori Kohri

    JPS autumn meeting 2020 

    Presentation date: 2020.09

  • Search for Anisotropy in Electron+Positron Cosmic Rays using CALET Data

    Holger Motz, Yoichi Asaoka, Shoji Torii, for the CALET Collaboration

    JPS Autumn Meeting 2019 

    Presentation date: 2019.09

  • Analysis of CALET Data for Anisotropy in Electron+Positron Cosmic Rays

    Holger Motz, Yoichi Asaoka for, he CALET collaboration

    36th International Cosmic Ray Conference (ICRC2019) 

    Presentation date: 2019.07

    Event date:
    2019.07
    -
    2019.08
  • Interpretation of the CALET Electron+Positron Spectrum concerning Dark Matter Signatures

    Holger Motz, Yoichi Asaoka, Saptashwa Bhattacharyya

    36th International Cosmic Ray Conference (ICRC2019) 

    Presentation date: 2019.07

  • Possible Interpretations of Structures in the CALET Electron+Positron Spectrum as Dark Matter Signatures

    Holger Motz, Yoichi Asaoka, Shoji Torii, Saptashwa Bhattacharyya

    JPS annual meeting 2019 

    Presentation date: 2019.03

  • Updated Constraints on Dark MatterAnnihilation and Decay from CALET Data

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    JPS Autumn Meeting 2018  (Shinshu University Matsumoto Campus) 

    Presentation date: 2018.09

     View Summary

    Installed on the ISS in August 2015 and taking data since October of that year, CALET (CALorimetric Electron Telescope) is directly measuring the electron+positron cosmic-ray spectrum up into the TeV-region with fine energy resolution and good proton rejection. The updated results of the measurement published in [O. Adriani et al. PRL 120, 261102] have been analyzed for signatures of Dark Matter. Limits on annihilation and decay of Dark Matter for selected Dark Matter models and propagation conditions were calculated. For this, the local electron and positron spectra were modeled with an analytic parametrization, including a term representing the flux from nearby pulsars as the extra electron-positron- pair source responsible for the positron excess. This parametrization is fitted to CALET electron+positron data and the positron-only flux measured by AMS-02, yielding a good fit quality. The expected Dark Matter flux for various annihilation and decay channels has been calculated with PYTHIA and the calculation of propagation to Earth was calculated numerically with DRAGON. This flux is added to the parametrization with an increasing scale factor until the fit quality reaches the 95%CL threshold, thereby obtaining a limit on the annihilation cross-section or lifetime of the tested Dark Matter candidate. By including systematic uncertainties with known energy dependence in the fitting function as corrections, the limits were improved compared to treating all error components as random errors.

  • Constraints on Dark Matter Annihilation and Decay from CALET Data

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    2018 TeV Particle Astrophysics conference  (Berlin) 

    Presentation date: 2018.08

     View Summary

    Installed on the ISS in August 2015 and taking data since October of that year, CALET (CALorimetric Electron Telescope) is directly measuring the electron+positron cosmic-ray spectrum up into the TeV-region with fine energy resolution and good proton rejection. The latest published total electron+positron spectrum is analyzed for Dark Matter signatures. Limits on annihilation and decay of Dark Matter are calculated by fitting the expected flux from Dark Matter on top of a parametrization of the astrophysical background spectrum to both CALET data and the positron flux measured by AMS-02. Starting from a purely astrophysical scenario with a nearby pulsar as the origin of the positron excess, the spectrum from Dark Matter annihilation or decay, which is numerically calculated with DRAGON, is added, and its scale-factor increased until the fit quality reaches the limit threshold. The flux from Dark Matter is calculated for multiple Dark Matter candidates with varying mass, yielding limits on annihilation cross-section or lifetime as a function of Dark Matter mass for each. In addition to presenting these Dark Matter limits and their comparison with results from other Dark Matter detection methods, possible interpretations of the spectrum measured by CALET including a contribution from Dark Matter will be discussed.

  • Implications for Dark Matter and Pulsar Contributions to the Positron Excess from CALET Data

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    73th annual meeting of the Physical Society of Japan, 2018  (Tokyo University of Science Noda Campus) 

    Presentation date: 2018.03

     View Summary

    Installed on the ISS in August 2015 and taking data since October of that year, CALET (CALorimetric Electron Telescope) is directly measuring the elec- tron+positron cosmic-ray spectrum up into the TeV-region with fine energy resolution and good proton rejection. The results of the measurement as pub- lished in [O. Adriani et al. PRL 119, 181101] have been analyzed for signatures of Dark Matter. Limits on annihilation and decay of Dark Matter for selected Dark Matter models and propagation conditions were calculated. For this, the local electron and positron spectra were modeled with an analytic parametrization, includ- ing a power law with exponential cut-off representing a nearby pulsar as the extra electron-positron-pair source responsible for the positron excess. The parametrization is fitted to CALET electron+positron data and the positron- only flux measured by AMS-02, showing good agreement. The expected Dark Matter flux for various annihilation and decay channels has been calculated with PYTHIA and propagated DRAGON, and is added to the parametrization with an increasing scale factor until the fit becomes excluded at 95%CL, thereby obtaining a limit on the annihilation cross-section or lifetime of the tested Dark Matter candidate. Limits for generic channels and selected Dark Matter candi- dates as a function of Dark Matter mass are presented and compared to those from other experiments. The CALET electron+positron spectrum shows structures, and especially a step around 400 GeV is better modeled if a flux from Dark Matter is added to the parametrization than without the Dark Matter term. The possibility of such a partial contribution of Dark Matter to the positron excess is discussed. Furthermore, a 3-body decay of fermionic Dark Matter is shown to be a possible cause of the positron excess without additional contributions from pulsars. While this scenario is strongly constrained by the Fermi-LAT diffuse gamma measurement, 800 GeV mass Dark Matter may be a candidate compatible with this γ-ray flux measurement. Based on simulated data for five years of CALET data-taking, the capability to discern the decaying Dark Matter model from a generic pulsar source scenario is shown.

  • Limits on Dark Matter and Nearby Astrophysical Sources from the CALET Electron+Positron Spectrum

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    CosPA, International Symposium on Cosmology and Particle Astrophysics, 2017  (Yukawa Institute for Theoretical Physics, Kyoto University) 

    Presentation date: 2017.12

     View Summary

    Installed on the ISS in August 2015 and taking data since October of that year, CALET (CALorimetric Electron Telescope) is directly measuring the electron+positron cosmic-ray spectrum up into the TeV-region with fine energy resolution and good proton rejection. The results of the measurement so far have been analysed for signatures of a nearby SNR or Dark Matter. Limits on annihilation and decay of Dark Matter for selected models and propagation conditions were calculated by fitting a combined parametrisation including an increasing Dark Matter term to the total electron+positron flux measured by CALET and the positron flux measured by AMS-02. Also the contribution from the Vela SNR to the flux in the TeV-region was studied and with an equivalent method constraints on the injected cosmic-ray energy derived.

  • Measurement of Electron Anisotropy with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya for, the CALET collaboration

    JPS Autumn Meeting 2017  (Utsumoniya University Mine Campus) 

    Presentation date: 2017.09

     View Summary

    The ISS-based Calorimetric Electron Telescope (CALET) is directly measuring the energy spectrum and direction distribution of electron+positron cosmic-rays well into the TeV-region. The measured events are analyzed for a possible dipole anisotropy as could be caused e.g. by emission from a nearby supernova remnant. The methods for deriving limits on the anisotropy from the reconstructed events, as well as the procedures to take into account the non-uniform exposure to the sky and possibly inhomogeneous acceptance of the detector are explained. Preliminary results for the measured anisotropy and upper limits in several energy ranges are presented.

  • Searching for Anisotropy in Electron+Positron Cosmic Rays with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    35th International Cosmic Ray Conference, ICRC2017  (Busan,Korea) 

    Presentation date: 2017.07

     View Summary

    The ISS-based Calorimetric Electron Telescope (CALET) is directly measuring the energy spectrum and direction distribution of electron+positron cosmic-rays up to 20 TeV. A main goal of CALET is to identify a signature of a nearby supernova remnant (SNR) in electron+positron cosmic-rays. The Vela SNR has the highest potential to cause a spectral feature in the TeV region and/or a detectable anisotropy. Using the numerical cosmic-ray propagation code DRAGON, the spectrum and expected anisotropy of the Vela SNR together with background from more distant SNR was calculated depending on injection and propagation conditions. The results of these calculations were used to simulate CALET event sky-maps on which several analysis methods were employed to estimate the CALET sensitivity. Assuming that there is no anisotropy, the expected limits on the dipole amplitude from an all-sky search were calculated as a function of the selected energy range and the shape of the predicted spectra. However for the detection of a dipole anisotropy, the direction towards Vela is predetermined, and sensitivity is strongly boosted by a directed search. It is shown that with this method, CALET has a significant probability to identify an anisotropy signature from Vela. As it may disturb the Vela signature, the contribution to the local cosmic-ray anisotropy from several other nearby SNR and pulsars, as well as from the general source distribution in the galaxy was studied. It was found that while there is some influence on direction and strength of the anisotropy, Vela is still expected to dominate and have a detectable signature. Furthermore, the implications of detecting an dipole anisotropy directed towards Vela for the local propagation parameters, such as the diffusion coefficient, are explained.

  • Searching for Anisotropy from nearby SNR in Cosmic Rays with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    73th annual meeting of the Physical Society of Japan, 2018  (Osaka University Toyonaka Campus) 

    Presentation date: 2017.03

     View Summary

    The ISS-based Calorimetric Electron Telescope (CALET) is directly measuring the energy spectrum and direction distribution of electron+positron cosmic-rays up to 20 TeV. A main goal of CALET is to identify a signature of a nearby supernova remnant (SNR) in electron+positron cosmic-rays. The Vela SNR may create a spectral feature in the TeV region and/or a de- tectable anisotropy. Using the numerical cosmic-ray propagation code DRAGON, the expected anisotropy caused by Vela was calculated depending on injection and propagation conditions, demonstrating that the employed numerical calculation method for cosmic-ray anisotropy reproduces previous analytical results. Furthermore, the contribution to the local cosmic-ray anisotropy from several other nearby SNR and pulsars, as well as from the general source distribution in the galaxy was studied. Different analysis techniques for detection of the anisotropy from Vela were tried on these simulation results, showing the need to consider these other sources in the optimization. It is shown that CALET has the potential to identify a signature from Vela, depending on the scale, power law index, cut-off energy and time evolution of the electron spectrum accelerated by the Vela SNR, as well as propagation parameters, such as the diffusion coefficient. The measurable anisotropy from Vela depends strongly on these propagation and injection parameters, which could thus be constrained by the (non-)detection of anisotropy.

  • Searching for Cosmic Ray Anisotropy from the Vela SNR with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    17th ISAS space science symposium  (JAXA ISAS Sagamihara Campus) 

    Presentation date: 2017.01

  • Investigating Leptonic 3-Particle Dark Matter Decay as the Source of the Positron Excess with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    JPS Autumn Meeting 2016  (Miyazaki University) 

    Presentation date: 2016.09

  • Indirect Dark Matter Search with CALET

    H. Motz, for, the CALET collaboration

    2016 TeV Particle Astrophysics conference  (CERN) 

    Presentation date: 2016.09

     View Summary

    The ISS based CALET (Calorimetric Electron Telescope) detector is directly measuring the energy spectrum of electron+positron cosmic rays up to 20 TeV with an expected energy resolution of 2%. With an estimated proton rejection capability of 1 : 10^5 and an aperture of approximately 1200 cm^2 sr, it will provide good statistics even well above one TeV. This precise spectrum is going to be analysed for signatures from nearby astrophysical sources such as pulsars and supernova remnants (SNR), as well as from Dark Matter annihilation and decay. Pulsars and Dark Matter are candidates for the postulated extra source emitting an equal amount of electrons and positrons that is regarded as the origin of the positron excess. Assuming a single pulsar is the extra source, the limits on a potential additional component from Dark Matter annihilation in the galactic halo expected to be obtained from 5 years of CALET observation are presented. It is shown that CALET could significantly improve upon current limits, especially for Dark Matter candidates with a large fraction of annihilation directly into electron+positron, such as the LKP (Lightest Kaluza-Klein particle). As a possible case of a Dark Matter only explanation of the positron excess, Dark Matter decaying in a 3-particle leptonic mode was studied, as it is not constrained by anti-proton measurements and multiple theories predict suitable Dark Matter candidates. Based on the expected signal and background in CALET, the potential to discern the signatures of this decay from a pulsar being the extra source is shown. The influence of a nearby SNR as an additional spectrum component in the TeV region and the prospects of using anisotropy in identification of the cosmic rays' origin are discussed as well.

  • Methods and Prospects for Science Analysis of CALET Data

    H. Motz  [Invited]

    KEK theory group seminar  (KEK Tsukuba)  Kazunori Kohri

    Presentation date: 2016.09

  • Discerning Pulsar and Dark Matter Explanations of the Positron Excess with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya

    73th annual meeting of the Physical Society of Japan, 2016  (Tohoku University Sendai) 

    Presentation date: 2016.03

     View Summary

    With supernova remnants assumed to be the main source of electron cosmic rays, an extra source emitting an equal amount of electrons and positrons can provide an explanation for the observed positron excess. The prime candidates for this source are nearby pulsar wind nebulae (PWN) and Dark Matter annihilation or decay. The Calorimetric Electron Telescope (CALET) has commenced operation on the ISS and will measure the energy spectrum of electron+positron cosmic rays up to 20 TeV, which could contain unique features caused by the extra source. The expected combined spectrum of background and a single dominating PWN has been parametrized, with the parametrization verified by comparison to numerical simulation results with DRAGON. Fitting this parametrization to a simulated or measured spectrum allows for testing whether it matches the PWN hypothesis. While the expected limits on Dark Matter annhilation from CALET data under the assuption that a PWN is the extra source have been published recently (JCAP12(2015)047), this study starts from the hypothesis that Dark Matter annihilation or decay are the sole component of the extra source. The expected spectra of several Dark Matter candidates which undergo either annihilation or decay and could provide a good fit to current experimental data were calculated. Then the expected event samples for the CALET measurement (5 years) for these cases were simulated and analyzed together with results on the positron fraction. The analysis tests if the prediction for the Dark Matter case can be fitted by the parametrization of the single PWN case, returning the χ 2 and the fit parameters which characterize the PWN’s properties that would resemble the Dark Matter case best. It is shown that the CALET measurement will be able to identify candidates which feature a substantial fraction of annihilation directly into a electron- positron pair, or decay into an electron/positron plus another particle. The key signature of these candidates is a hard drop in the spectrum, which could be detected due to the good energy resolution of CALET, and the good statistics it will achieve even in the TeV region. They could be clearly separated from the PWN case by the fit’s χ 2 , and the mass of the Dark Matter particle estimated.

  • Dark Matter Search with CALET

    H. Motz  [Invited]

    Colloquium of the Department of Physics & Astronomy at Macalester College  John Cannon

    Presentation date: 2016.03

  • Ability of CALET to Identify or Constrain Dark Matter Annihilation and Decay in the Galactic Halo

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya, Y. Akaike

    16th ISAS space science symposium  (JAXA ISAS Sagamihara Campus) 

    Presentation date: 2016.01

  • Dark Matter Sensitivity of CALET

    H. Motz, for, the CALET collaboration

    2015 TeV Particle Astrophysics conference  (Kashiwa) 

    Presentation date: 2015.10

     View Summary

    CALET (Calorimetric Electron Telescope), launched to the ISS in August, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 10^5 and an aperture of 1200 cm^2 sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others, such as identification of signatures from nearby supernova remnants by observation of TeV electrons, and measurement of the heavy nuclei spectra to study the cosmic ray acceleration and diffusion mechanism. The positron excess in cosmic rays above 10 GeV was initially proposed by the AMS-02 collaboration to originate from an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including such an extra power law source, which in general may represent nearby astrophysical accelerators or annihilation/decay of Dark Matter. Assuming that the source is a single pulsar, this scenario is extrapolated into the TeV-region and the expected CALET data for this case simulated. Based on this prediction and taking the shape of the Dark Matter annihilation spectrum into account, the sensitivity of CALET to an additional component from Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve these limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into electron+positron, such as the LKP (Lightest Kaluza-Klein particle). The alternative case of Dark Matter annihilation or decay being the primary cause of the positron excess and the prospects of CALET detecting the corresponding Dark Matter signature are discussed as well.

  • CALET’s Sensitivity to Dark Matter and Astrophysical Sources

    H. Motz, for, the CALET collaboration

    34th International Cosmic Ray Conference  (The Hague, The Netherlands) 

    Presentation date: 2015.07

     View Summary

    he Calorimetric Electron Telescope (CALET) will be launched to the ISS within this year and measure the energy and direction distribution of electron+positron cosmic rays well into the TeV range during a 5 year mission. With a 1:10^5 proton rejection rate and an energy resolution of 2%, it is capable of detecting even small features in the spectrum. Combining the measurement of the total electron and positron flux by CALET with the positron fraction data from the AMS-02 experiment, it will be possible to significantly constrain models of Dark Matter annihilating in the galactic halo. Assuming the positron excess is caused by a single power law source, the expected Dark Matter limits for the year 2021 will be presented, based on simulated data for the 5 year CALET mission together with positron fraction data for by then 10 years of AMS-02 measurement, extrapolated from their latest published results. These predictions are compared to limits derived with the same procedure using current experimental data from AMS-02 and Fermi-LAT. While emission from a single nearby pulsar wind nebula is a possible explanation for the positron excess, the large number of pulsars discovered by radio and X-ray telescopes makes an overlapping spectrum from several strongly contributing sources likely. Based on a numerical cosmic ray propagation simulation, the cosmic-ray spectra from nearby pulsar wind nebulae have been calculated and the expected capability of CALET to discern the multiple overlapping spectra, with parameters chosen to explain the observed cosmic ray excess, from the single power law spectrum of one pulsar is shown.

  • Expected Dark Matter Sensitivity of CALET in Relation to Present and Future AMS-02 Observation

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya, T. Niita, Y. Okada, Y. Akaike, the CALET collaboration

    70th annual meeting of the Physical Society of Japan, 2018  (Waseda University) 

    Presentation date: 2015.03

  • CALET’s Sensitivity to Dark Matter Signatures and Astrophysical Sources

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya, T. Niita, Y. Okada, Y. Akaike

    15th ISAS space science symposium  (JAXA ISAS Sagamihara Campus) 

    Presentation date: 2015.01

  • Resolving Individual Pulsars contributing to the Cosmic Ray positron Excess with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya, T. Niita, Y. Okada, Y. Akaike, the CALET collaboration

    JPS autumn meeting 2014  (Saga University) 

    Presentation date: 2014.09

     View Summary

    The Calorimetric Electron Telescope (CALET), which is going to be installed at the ISS, will measure the energy and direction distribution of electron/positron cosmic rays. Featuring a proton rejection capability of 1:10 5 and an energy res- olution of 2% together with a large aperture of 1200 cm 2 sr, it is well suited to investigate features in the spectrum well into the TeV range. With these capabilities, the origin of the observed cosmic ray positron excess can be in- vestigated, since the extra positrons should also create an excess above a pure power law in the combined electron/positron spectrum. For pulsars, the prime candidate source to cause the excess, an equal emission of electrons and positrons is expected, doubling this contribution. While a single nearby pulsar could explain the excess, overlapping spectra of multiple pulsars with positions according to the entries in the ATNF catalog also match the current measurements of Fermi-LAT and AMS-02. Several pulsars within 2 kpc distance from Earth were simulated as point sources in the simulation code DRAGON. While the position of the pulsars and their age were taken from the ATNF catalogue, an efficiency factor, as well as the injection spectrum power law index and exponential cutoff remain free parameters characterising the charged particle emission. These parameters were selected in a random walk together with the parameters governing the power law background, so that the positron fraction is in agreement with current AMS-02 results, and the electron/positron flux in agreement with the results of Fermi-LAT. Based on the predicted flux from these scenarios, 5 year samples of CALET data were simulated. These samples were analysed to estimate to which degree a single source being the major contributor to the positron excess can be identified if present in the sample, or excluded in the case of several pulsars contributing significantly. It is shown that in general the power law spectrum of a single source can be well distinguished from the expected distribution from the overlap of several nearby pulsars based on 5 years of CALET data

  • Searching for Dark Matter Signatures in Cosmic Rays with CALET

    H. Motz, Y. Asaoka, S. Torii, S. Bhattacharyya, T. Niita, Y. Akaike

    2014 TeV Particle Astrophysics conference  (Amsterdam, The Netherlands) 

    Presentation date: 2014.06

  • CALET’s Potential to Identify the Origin of the Cosmic Ray Positron Excess

    H. Motz, S. Bhattacharyya, S. Torii, T. Niita, Y. Asaoka, Y. Akaike, for, the, CALET collaboration

    69th annual meeting of the Physical Society of Japan, 2014  (Tokai University) 

    Presentation date: 2014.03

  • Expected Sensitivity of CALET to Dark Matter Annihilation

    H. Motz, S. Bhattacharyya, S. Torii, T. Niita, Y. Asaoka, Y. Akaike, for, the, CALET collaboration

    JPS autumn meeting 2013  (Kochi University) 

    Presentation date: 2013.09

  • Ashra-1 Observation and Run Control

    C. Abiko, Y. Aita, T. Aoki, Y. Asaoka, P. Binder, J. Goldman, J, Hamilton, C. Kanokohata, T. Kimura, D. Kogure, M. Sasaki, H. Kuze, J. Learned, M. Masuda, S. Matsuno, Y. Morimoto, H, Motz, S. Ogawa, H. Shibuya, N. Sugiyama, T. Takada, H, Tsujikawa, Y. Watanabe

    68th annual meeting of the Physical Society of Japan, 2013  (Hiroshima University) 

    Presentation date: 2013.03

  • Current Observation Status of Ashra

    C. Abiko, Y. Aita, T. Aoki, Y. Asaoka, P. Binder, J. Goldman, J. Hamilton, C. Kanokohata, T. Kimura, D. Kogure, M. Sasaki, H. Kuze, J. Learned, M. Masuda, S. Matsuno, Y. Morimoto, H. Motz, S. Ogawa, H. Shibuya, N. Sugiyama, T. Takada, H. Tsujikawa, Y. Watanabe

    JPS autumn meeting 2012  (Kyoto Sangyo University) 

    Presentation date: 2012.09

▼display all

 

Syllabus

▼display all

 

Sub-affiliation

  • Faculty of Science and Engineering   Graduate School of Advanced Science and Engineering

Internal Special Research Projects

  • Search for a Combined Spectrum and Anisotropy Signature of the Vela SNR with CALET

    2020  

     View Summary

    This project comprised the refinement of previous work on Dark Matter Search using&nbsp; cosmic-ray spectra measured by CALET (electron+positron) and AMS-02 (positron-only), as well as in initial steps towards the goal of identifying a signature of the Vela SNR in CALET data.The study of signatures from a flavor-dependent gauge-symmetry dark matter was updated, including among other items a comparison with current and future neutrino observations, concluded by publication in PRD and presentations in a JPS meeting and at the Kashiwa Dark Matter symposium. &nbsp;Concurrently, a method to study the emission of electron cosmic rays from the nearby Vela SNR quantitatively was developed. The expected spectrum from Vela is calculated, normalized to a total emission energy of 10^48 erg. By re-scaling this flux in a fit with a flexible background model, best fit interpretations and upper limits were derived, depending on parameters of the Vela SNR, as well as the cosmic-ray propagation conditions. First results with this&nbsp; method based on the spectrum published by the CALET collaboration in 2018 were presented at the annual JPS meeting. It was shown that CALET limits the emitted energy by Vela to within a factor four&nbsp; from the proposed value of 10^48 erg.

  • Investigating Structures in the CALET Electron+Positron Spectrum as Dark Matter or Pulsar Signatures

    2019   Yoichi Asaoka, Hiroshi Okada, Kazunori Kohri

     View Summary

    The electron+positron spectrum measured by CALET features structures which could be signatures of individual astrophysical point sources, or alternatively Dark Matter (DM) annihilation or decay.This was investigated using a parametrized model assuming initially a single pulsar as the source of the positron excess fitted to the CALET electron+positron spectrum and the AMS-02 positron-only spectrum. Addition of multiple pulsars, or alternatively the flux from DM annihilating partly through the electron-positron channel can improve the fit significantly by modeling a step-like structure around 350-400 GeV (presented at ICRC 2019 and published in its proceedings). Also presented were updated limits on the DM annihilation/decay rate which are competitive for electron and muon channel, while DM search by gamma-rays favors the tau-channel.An extension of the Standard Model by U(1)_e-mu gauge symmetry was investigated, finding a DM candidate particle interacting only with electron and muon, with the structure in the CALET spectrum being compatible with its signature (result paper uploaded on arxiv).&nbsp; Another topic investigated was the anisotropy of the electron-positron flux, calculating an omni-directional limit on dipole anisotropy (presented at ICRC2019 and JPS autumn meeting).

  • Analysis of the CALET Electron+Positron Cosmic-Ray Spectrum for Dark Matter Signatures

    2018   Saptashwa Bhattacharyya

     View Summary

    This project focused on the scientific analysis of data from the CALET cosmic-ray detector on the ISS for signatures of Dark Matter.Previously calculated limits on Dark Matter annihilation and decay from CALET data were refined. The limit calculation is based on a parametrization of the spectra from astrophysical sources fitted to CALET (electron+positron) and AMS-02 (positron-only) data, to which the expected flux from Dark Matter is added until the model is excluded, yielding a limit.The parametrization of the pulsar source assumed to cause the positron excess was improved from a generic power law with exponential cut-off to a semi-analytically calculated spectrum for individual known pulsars.&nbsp; The combined spectrum of multiple pulsars fits significantly better than a single pulsar, modelling better a step-like spectral structure at 350 GeV.Alternative to multiple pulsars, a Dark Matter explanation is also possible, assuming a single pulsar background, which is also applicable to a step at 1 TeV not explainable by nearby pulsars.A model of leptonic three-body Dark Matter decay as the only source of the positron excess was published in a refereed journal after improving the discussion of constraints from gamma-ray observation.

  • Numerical Calculation of Cosmic Ray Anisotropy

    2017   Bhattacharyya Saptashwa

     View Summary

    This research project advanced the scientific analysis of data from the CALET cosmic-ray detector on the ISS with regard to anisotropy of the flux and signatures of Dark Matter Annihilation and decay. Using numerical simulation, reference models for the interpretation of the CALET data are created. The anisotropy of the cosmic ray electron+positron flux measured with CALET was analyzed, confirming the reliability of the analysis methods previously tested on Monte Carlo simulations. On the field of indirect Dark Matter search, limits on Dark Matter annihilation and decay were calculated from published CALET data.&nbsp; A weak hint at what could be a signature of Dark Matter annihilation or decay was studied, since additional flux from Dark Matter was found to slightly better model a step structure in the spectrum than the power-law background from astrophysical sources alone.Furthermore,&nbsp; leptonic three-body decay of Dark Matter as the sole cause of the positron excess was investigated. It was shown that a parameter space both for this Dark Matter model, as well as the single-pulsar model exists with current CALET data, but that the two cases could be separated with full statistics of&nbsp; 5-year CALET data.

  • Precise Cosmic-Ray Simulations to Support CALET Data Analysis

    2016   Bhattacharyya Saptashwa

     View Summary

    The expected anisotropy in electron+positron cosmic-rays was calculated using numerical methods,&nbsp; to study a possible anisotropy signature from the Vela SNR, and its detectability with CALET. For these calculations, the code DRAGON was extended to extract the anisotropy information near the solar system from the cosmic-ray distribution on the spatial grid, on which the calculation is done. As the required finely binned grid requires a PC with large RAM, the hardware procured from this project grant was essential in accomplishing this. Based on these calculations, the sensitivity of CALET to anisotropy of the electron+positron flux was studied, and expected limits on the dipole amplitude calculated. To enhance the sensitivity, an analysis method assuming a fixed direction of the dipole towards Vela was tested, and it was shown that a possibility to find a significant signal exists.Using similar numerical calculations, the signature of Dark Matter decay in cosmic-rays and its background were studied. Specifically, leptonic 3-particle decay of Dark Matter was investigated as a potential source of the positron excess and it was shown that CALET has potential to discern this Dark Matter decay from a nearby pulsar causing the positron excess.

  • Systematic Preparation for Analysis of CALET Data

    2015   Bhattacharyya, Saptashwa , 岡田侑子

     View Summary

    This project served to prepare for the scientific analysis of data from the ISS-based cosmic-ray experiment CALET, which for the first time directly measures the TeV-region spectrum of electron cosmic rays. The cosmic ray signatures of nearby astrophysical sources and Dark Matter Annihilation and Decay were studied. Based on these results, methods to distinguish different models or constrain their parameter spaces with CALET data were developed, and CALET’s sensitivity to these signatures evaluated.The sensitivity of CALET to Dark Matter Annihilation in the Galactic Halo was calculated for several Dark Matter candidates, with the results presented at conferences and published in the Journal of Cosmology and Astroparticle Physics. This study also evaluated the influence of uncertainties on the background spectrum and the cosmic-ray propagation parameters on the expected limits.To investigate the influence of a nearby supernova remnant (SNR), the spectrum of the nearby Vela SNR was calculated using the numerical calculation program DRAGON, which was extended to include calculation of individual point-sources. The case of decaying Dark Matter has also been studied, showing the potential of CALET to identify decay with at least some direct decay to electrons and positrons.

▼display all