堀井 俊佑 (ホリイ シュンスケ)

写真a

所属

附属機関・学校 グローバルエデュケーションセンター

職名

准教授

学歴 【 表示 / 非表示

  •  
    -
    2009年

    早稲田大学   理工学研究科  

  •  
    -
    2004年

    早稲田大学   理工学研究科  

  •  
    -
    2004年

    早稲田大学   理工学研究科  

  •  
    -
    2004年

    早稲田大学   理工学研究科  

学位 【 表示 / 非表示

  • 博士

 

研究分野 【 表示 / 非表示

  • 知能情報学

研究キーワード 【 表示 / 非表示

  • 情報理論、符号理論、統計的学習理論

論文 【 表示 / 非表示

  • Model Selection of Bayesian Hierarchical Mixture of Experts Based on Variational Inference

    飯窪裕二, 堀井俊佑, 松嶋敏泰

    2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC2019)    2019年10月  [査読有り]

  • Distributed Stochastic Gradient Descent Using LDGM Codes

    堀井俊佑, 吉田隆弘, 小林学, 松嶋敏泰

    Proceedings of 2019 IEEE International Symposium on Information Theory (ISIT2019)     1417 - 1421  2019年07月  [査読有り]

    DOI

  • A Study on Analytical Properties of Bayesian Experimental Design Model based on an Orthonormal System

    Yoshifumi Ukita

        22  2017年11月  [査読有り]

  • Bayesian Sparse-Smooth Modeling and Variational Inference

    Shunsuke Horii

    Proc. of Bayes on the Beach 2017     16  2017年11月  [査読有り]

  • Linear Programming Decoding of Binary Linear Codes for Symbol-Pair Read Channel

    Shunsuke Horii, Toshiyasu Matsushima, Shigeichi Hirasawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E99A ( 12 ) 2170 - 2178  2016年12月  [査読有り]

     概要を見る

    In this study, we develop a new algorithm for decoding binary linear codes for symbol-pair read channels. The symbol-pair read channel was recently introduced by Cassuto and Blaum to model channels with higher write resolutions than read resolutions. The proposed decoding algorithm is based on linear programming (LP). For LDPC codes, the proposed algorithm runs in time polynomial in the codeword length. It is proved that the proposed LP decoder has the maximum-likelihood (ML) certificate property, i.e., the output of the decoder is guaranteed to be the ML codeword when it is integral. We also introduce the fractional pair distance d(fp) of the code, which is a lower bound on the minimum pair distance. It is proved that the proposed LP decoder corrects up to. inverted left perpendiculard(fp)/2inverted right perpendicular - 1 errors.

    DOI

全件表示 >>

書籍等出版物 【 表示 / 非表示

  • 統計リテラシーα -データの整理- 2015年度版

    堀井俊佑( 担当: 単著)

    早稲田大学出版部  2015年04月

共同研究・競争的資金等の研究課題 【 表示 / 非表示

  • ネットワークの多様化が経済と心理に及ぼす影響-計量・行動経済学と理系の融合研究-

    研究期間:

    2018年04月
    -
    2023年03月
     

  • スパースモデリングとベイズ決定理論に基づいた因果推論手法の構築

    研究期間:

    2019年04月
    -
    2022年03月
     

     概要を見る

    データ分析から得られた知見を使い,何らかの行動をした場合の結果を統計的に分析する方法として統計的因果推論の研究が注目を浴びている.本研究では特に因果ダイアグラム・構造方程式モデルに基づいた統計的因果推論を扱う.本研究では「介入効果をベイズ最適に推定する場合の有効性はどの程度か?」及び「ベイズ的スパースモデリングの考え方を応用することで,ベイズ最適な介入効果推定を効率的に近似計算することは可能か?」という2つの問いに対し,構造的因果推論,機械学習,最適化理論,ベイズ統計学,統計的決定理論,スパースモデリングの分野の知見を融合したアプローチによって,肯定的な回答を与えることを目指す.本研究の目的は,統計的因果分析における因果効果の推定問題をスパースモデリング・ベイズ統計学・決定理論に基づいてモデル化し,ベイズ最適な決定法,及び効率的な近似アルゴリズムの構築と解析を行うことであった.本研究の予備研究として,真の介入効果と推定介入効果の間の距離をカルバック・ライブラー距離で計る場合のベイズ最適な推定量を導出していたが,その研究の拡張として,平均介入効果の推定問題を扱い,二乗誤差損失を考えた場合のベイズ最適な推定量を導出した.一般的に介入効果を推定する場合,まず変数間の関係性を表す因果ダイアグラムを推定し,推定された因果ダイアグラムのもとで介入効果を推定するという二段階のアプローチがとられるが,本研究で提案した推定法は,各因果ダイアグラムのもとで推定した介入効果の推定量を,因果ダイアグラムの事後確率で期待値をとるというものになる.これにより,サンプルサイズが小さい場合でも平均的に推定精度の良い推定が可能となることを示した.また,操作変数を利用した因果推論の研究を行った.操作変数とは,処置変数と相関を持ち,目的変数とは処置変数を通して以外では相関を持たない変数であり,操作変数を利用した因果推論は経済学の分野で盛んに研究されている.操作変数は除外制約という制約を満たしている必要があるが,この制約はデータからのみでは検証することが出来ない.本研究では,除外制約を満たさない可能性が数多くあるという状況を考え,そのような場合でも効率的に因果推論が可能な手法を構築した.予定では,構造的因果推論に対するベイズ最適な推定法の性質の解明について,既に行っていた予備研究を拡張し,ベイズ的スパースモデリングによるモデル化について,文献調査や手法構築を行う予定であった.この2点について,計画通り研究を遂行し,学会発表により成果を公表できている.2020年度と2021年度は,まず2019年度に行った研究を論文としてまとめる.2019年度に構築した最適なアルゴリズムは,変数の数が多くなると,計算量的に計算が困難になるという問題がある.この問題を解決するために,MCMC法や変分ベイズ法などを応用し,効率的近似アルゴリズムを構築する予定である

  • 空間的分析と時間的制御を融合した、次世代商品推薦システムのための基礎理論の構築

    研究期間:

    2016年04月
    -
    2019年03月
     

     概要を見る

    従来から商品推薦システムでは、同じクラスに属する顧客は同様の商品を購入すると仮定して、顧客や商品の類似度に関する分析結果を商品の推薦に利用している。本課題では、顧客や商品の類似度に関する分析を空間的分析と呼んでいる。また、商品を推薦する本来の目的は売上高の最大化であり、目的を達成するためには商品の推薦と推薦後の顧客の行動(購入/未購入)を時間軸でとらえて分析し、顧客を購買行動へ誘導するような商品を推薦する必要がある。本課題では、このような顧客の誘導を時間的制御と呼んでいる。本課題では、空間的分析と時間的制御を融合した商品推薦問題において、マルコフ決定過程を用いて定式化し、売上高を最大化する次世代商品推薦システムのための基礎理論を構築することを目的としている。今年度は従来技術に関する調査・分析を実施後に、顧客が属するクラスが時間の経過に伴って変化するような顧客クラスのモデルをマルコフ連鎖によって表現した。従来から検討されているマルコフ決定過程による顧客への推薦と顧客による購買を表現したモデルに、マルコフ連鎖による顧客クラスのモデルを加味して拡張することにより、空間的分析と時間的制御の融合を試みた。顧客のクラス変化を考慮した拡張モデルにおける顧客の所属クラスが未知という問題設定に対して、売上高をベイズ基準のもとで最大化する定式化を行い、実際にベイズ最適な推薦商品を算出する動的計画法を用いた提案アルゴリズムを導出した。さらに、数値計算例によって提案アルゴリズムの検証も行い、その有効性を確認した。実施計画では平成28年度は空間的分析と時間的制御を融合させた商品推薦問題の定式化を行うこととし、平成29年度の実施計画として空間的分析方法の提案と空間的分析と時間的制御を融合させた商品推薦方法の提案を挙げ、平成30年度の実施計画として提案方法の検証を挙げていた。平成28年度の実績は上記のとおり、顧客のクラス変化を考慮した拡張モデルにおける顧客の所属クラスが未知という問題設定に対して、売上高をベイズ基準のもとで最大化する定式化を行い、実際にベイズ最適な推薦商品を算出する動的計画法を用いた提案アルゴリズムを導出した。さらに、数値計算例によって提案アルゴリズムの検証も行い、その有効性を確認した。このように平成28年度の実績は、平成29年度以降の実施計画の一部を包含している。よって、進捗としては当初計画以上に進展していると判断する。平成28年度には、従来技術の調査・分析後に、顧客のクラス変化を考慮した拡張モデルにおける顧客の所属クラスが未知という問題設定のもとで検討を進め、定式化・提案アルゴリズムの導出・検証をおこなった。平成28年度の検討結果より、何も事前情報がない新規顧客に関する情報を当該顧客から入手するための新規顧客問題、利用する各種確率モデルの真のパラメータが未知の場合の機械学習問題など、検討すべき課題が多々存在することも明らかになった。そこで、本研究課題の今後の推進方策としては、検討の必要性が明らかになった新規顧客問題などを加味した空間的分析と時間的制御を融合させた商品推薦方法に関する定式化・提案アルゴリズムの導出・検証を進めていきたい。当初平成28年度に予定していた計算機の購入を平成29年度に実施することを計画している

  • 大規模データ時代のビジネスアナリティクス手法に関する基礎的研究

    研究期間:

    2014年04月
    -
    2017年03月
     

     概要を見る

    本研究では,大規模かつ多様なビジネスデータの分析技術(ビジネスアナリティクス)の体系化と深化を研究の目的とし,様々なビジネスデータに対応した分析モデルの提案と評価を行った.具体的には,1)ECサイトのデータベース情報を対象とした情報分析技術の開発,2)テキストデータとして蓄積されるマーケティング情報の分析技術の開発,3)情報推薦のための統計モデルの開発,4)情報検索や推薦の技術を活用したWebマーケティングモデルの理論解析,5)高次元かつ疎な大規模データを対象とした分析手法の開発,6)プライバシー保護データ解析の方法論の開発,などの個別研究課題を軸として研究を推進した

  • 確率的要素を含む情報セキュリティシステムの利便性と安全性からの最適化と統合評価

    研究期間:

    2013年04月
    -
    2016年03月
     

     概要を見る

    確率的要素を含む情報セキュリティ問題に対し確率モデルにより定式化を行い,安全性や利便性等の評価基準を明確にし,最適な攻撃法や認証法等を理論的に明らかにした.個々の符号やシステムに対して安全性を評価するのではなく,統一的数理モデルの枠組のもとで安全性の理論的な限界を不変的に評価した.さらに,安全性と利便性のトレードオフ関係についても,理論的限界や最適性を明らかにし,情報セキュリティシステムの新たな評価指標を示した.また,学習理論や最適化理論等の周辺研究分野における等価な確率モデルを用いた問題の成果を応用することで,最適法を近似する高性能アルゴリズムを構成し,安全性や利便性を具体的に評価した

講演・口頭発表等 【 表示 / 非表示

  • メッセージ伝搬アルゴリズムとその応用

    堀井俊佑

    数理人セミナー  

  • 分散コンピューティングへの誤り訂正符号の応用に関する研究動向

    堀井俊佑  [招待有り]

    第7回 誤り訂正符号のワークショップ   (岩手)  電子情報通信学会 情報理論とその応用サブソサイエティ  

    発表年月: 2018年09月

  • Bayesian Compressed Sensing with Hybrid hierarchical Prior

    Shunsuke Horii

    2018 ISBA World Meeting   (エディンバラ) 

    発表年月: 2018年06月

  • Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

    Shunsuke Horii

    AABI2017, NIPS workshop "Advances in Approximate Bayesian Inference"  

    発表年月: 2017年12月

  • 分散最適化手法の線形符号の復号への応用

    堀井俊佑  [招待有り]

    誤り訂正符号ワークショップ  

    発表年月: 2013年09月

特定課題研究 【 表示 / 非表示

  • 操作変数に基づく因果推論に対するスパースモデリングとベイズ決定理論の応用

    2020年  

     概要を見る

    ベイズ的スパースモデリングの考え方を応用し,ベイズ最適な因果効果推定を効率的に近似計算するアルゴリズムを導出した.その成果を第23回情報論的学習理論ワークショップ(IBIS2020),13th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2020)で発表した.

  • スパースモデリングとベイズ決定理論に基づいた因果推論手法の構築

    2019年  

     概要を見る

    統計的因果推論の問題を決定理論に基づいて定式化し,二乗誤差損失にたいしてベイズ最適な決定法を導出した.その成果を11th Asia-Europe Workshop on concepts in Information theoryで発表した.また,操作変数を用いた因果推論の問題に対して,ベイズ的スパースモデリングを応用した手法を構築した.その成果を第22回情報論的学習理論ワークショップ(IBIS2019),第42回情報理論とその応用シンポジウム(SITA2019),12th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2019)で発表した.

  • スパースモデリングとベイズ決定理論に基づいた意思決定手法の構築

    2018年  

     概要を見る

    圧縮センシングの問題において,画像の疎性・滑らかさを考慮に入れた変分ベイズ法に基づいた復元アルゴリズムを構築した.その成果を国際会議Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2018)で発表した.統計的因果推論の問題を決定理論に基づいて定式化し,ベイズ最適な決定法を導出した.その成果を53rd Annual Conference on Information Science and Systems (CISS 2019)で発表した.

  • スパースモデリングとベイズ決定理論に基づいた意思決定手法の構築

    2018年  

     概要を見る

    圧縮センシングの問題において,画像の疎性・滑らかさを考慮に入れた変分ベイズ法に基づいた復元アルゴリズムを構築した.その成果を国際会議Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2018)で発表した.統計的因果推論の問題を決定理論に基づいて定式化し,ベイズ最適な決定法を導出した.その成果を53rd Annual Conference on Information Science and Systems (CISS 2019)で発表した.

  • 多端子型学習問題に対する分散最適化に基づいた学習アルゴリズムの研究

    2014年  

     概要を見る

    関連データを用いた学習問題,マルチタスク学習問題,並列分散環境における学習問題を統合的に 扱い,これらの問題を凸最適化問題として定式化し,分散最適化に基づいた効率的学習アルゴリズムを構築する研究を行った.得られた研究成果をIEEE SMC2014において発表を行った.

全件表示 >>

 

現在担当している科目 【 表示 / 非表示

全件表示 >>