SAKAGUCHI, Katsuhisa

写真a

Affiliation

Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering

Job title

Associate Professor(without tenure)

Mail Address

E-mail address

Homepage URL

https://researchers.waseda.jp/profile/ja.8eadae6f9c7d6853a9b7bc21190e12d2.html

Profile

早稲田大学 先進理工学研究科 生命理工学専攻 准教授
1998-2002年 早稲田大学 機械工学科 学部
2002-2004年 早稲田大学大学院 生命理工学専攻 修士課程
2006-2010年 早稲田大学大学院 生命理工学専攻 博士課程
2009-2012年 早稲田大学 総合機械工学科助手
2012-2015年 早稲田大学 理工学術院総合研究所 次席研究員/研究院講師
2015-2019年 早稲田大学 理工学術院総合研究所 主任研究員/研究院准教授
2019年~ 早稲田大学 先進理工学研究科 生命理工学専攻 准教授

Research Institute 【 display / non-display

  • 2020
    -
    2022

    理工学術院総合研究所   兼任研究員

Degree 【 display / non-display

  • Waseda University   Doctor of Philosophy in Engineering

Professional Memberships 【 display / non-display

  •  
     
     

    ライフサポート学会

  •  
     
     

    日本人工臓器学会

  •  
     
     

    日本機械学会

  •  
     
     

    日本再生医療学会

 

Research Areas 【 display / non-display

  • Robotics and intelligent system   Biomechanics

  • Biofunction and bioprocess engineering

  • Biomedical engineering   Tissue Engineering

Research Interests 【 display / non-display

  • 医用機械工学

  • 細胞培養工学

  • 組織工学

  • 再生医療

Papers 【 display / non-display

  • Bioengineering of a scaffold-less three-dimensional tissue using net mould

    Katsuhisa Sakaguchi, Yusuke Tobe, Jiayue Yang, Ryu-ichiro Tanaka, Kumiko Yamanaka, Jiro Ono, Tatsuya Shimizu

    Biofabrication    2021.09

    DOI

  • Perfusable System Using Porous Collagen Gel Scaffold Actively Provides Fresh Culture Media to a Cultured 3D Tissue.

    Chikahiro Imashiro, Kai Yamasaki, Ryu-Ichiro Tanaka, Yusuke Tobe, Katsuhisa Sakaguchi, Tatsuya Shimizu

    International journal of molecular sciences   22 ( 13 )  2021.06  [International journal]

     View Summary

    Culturing three-dimensional (3D) tissues with an appropriate microenvironment is a critical and fundamental technology in broad areas of cutting-edge bioengineering research. In addition, many technologies have engineered tissue functions. However, an effective system for transporting nutrients, waste, or oxygen to affect the functions of cell tissues has not been reported. In this study, we introduce a novel system that employs diffusion and convection to enhance transportation. To demonstrate the concept of the proposed system, three layers of normal human dermal fibroblast cell sheets are used as a model tissue, which is cultured on a general dish or porous collagen scaffold with perfusable channels for three days with and without the perfusion of culture media in the scaffold. The results show that the viability of the cell tissue was improved by the developed system. Furthermore, glucose consumption, lactate production, and oxygen transport to the tissues were increased, which might improve the viability of tissues. However, mechanical stress in the proposed system did not cause damage or unintentional functional changes in the cultured tissue. We believe that the introduced culturing system potentially suggests a novel standard for 3D cell cultures.

    DOI PubMed

  • Functional Analysis of Induced Human Ballooned Hepatocytes in a Cell Sheet-Based Three Dimensional Model

    Botao Gao, Katsuhisa Sakaguchi, Tetsuya Ogawa, Yuki Kagawa, Hirotsugu Kubo, Tatsuya Shimizu

    Tissue Engineering and Regenerative Medicine    2021.01  [Refereed]

    DOI

  • Reconstruction of a Vascular Bed with Perfusable Blood Vessels Using a Decellularized Porcine Small Intestine for Clinical Application

    Yusuke Tobe, Katsuhisa Sakaguchi, Jun Homma, Kazunori Sano, Eiji Kobayashi, Hidekazu Sekine, Kiyotaka Iwasaki, Tatsuya Shimizu, Mitsuo Umezu

    IFMBE Proceedings     284 - 292  2021  [Refereed]

    DOI

  • Measuring the Contractile Force of Multilayered Human Cardiac Cell Sheets.

    Katsuhisa Sakaguchi, Hiroaki Takahashi, Yusuke Tobe, Daisuke Sasaki, Katsuhisa Matsuura, Kiyotaka Iwasaki, Tatsuya Shimizu, Mitsuo Umezu

    Tissue engineering. Part C, Methods   26 ( 9 ) 485 - 492  2020.09  [Refereed]  [International journal]

     View Summary

    Three-dimensional (3D) cardiac tissue reconstruction using tissue engineering technology is a rapidly growing area of regenerative medicine and drug screening development. However, there remains an urgent need for the development of a method capable of accurately measuring the contractile force of physiologically relevant 3D myocardial tissues to facilitate the prediction of human heart tissue drug sensitivity. To this end, our laboratory has developed a novel drug screening model that measures the contractile force of cardiac cell sheets prepared using temperature-responsive culture dishes. To circumvent the difficulties that commonly arise during the stacking of cardiomyocyte sheets, we established a stacking method using centrifugal force, making it possible to measure 3D myocardial tissue. Human induced pluripotent stem cell-derived cardiomyocytes were seeded in a temperature-responsive culture dish and processed into a sheet. The cardiac cell sheets were multilayered to construct 3D cardiac tissue. Measurement of the contractile force and cross-sectional area of the multilayered 3D cardiac tissue were then obtained and used to determine the relationship between the cross-sectional area of the cardiac tissue and its contractile force. The contractile force of the 1-, 3-, and 5-layer tissues increased linearly in proportion to the cross-sectional area. A result of 6.4 mN/mm2, accounting for one-seventh of the contractile force found in adult tissue, was obtained. However, with 7-layer tissues, there was a sudden drop in the contractile force, possibly because of limited oxygen and nutrient supply. In conclusion, we established a method wherein the thickness of the cell sheets was controlled through layering, thus enabling accurate evaluation of the cardiac contractile function. This method may enable comparisons with living heart tissue while providing information applicable to regenerative medicine and drug screening models.

    DOI PubMed

display all >>

Misc 【 display / non-display

  • 実験室で培養される人工組織・臓器

    坂口勝久

    生物工学会誌   99 ( 4 )  2021

    J-GLOBAL

  • 移植可能な血管床の作製のための脱細胞化組織骨格の再細胞化手法の検討

    戸部友輔, 坂口勝久, 坂口勝久, 関根秀一, 本間順, 佐野和紀, 小林英司, 清水達也, 梅津光生

    日本再生医療学会総会(Web)   19th  2020

    J-GLOBAL

  • ネットモールド法により構築可能な3次元組織厚に関する基礎検討

    楊佳悦, 大野次郎, 坂口勝久, 戸部友輔, 清水達也, 梅津光生, 梅津光生

    日本再生医療学会総会(Web)   19th  2020

    J-GLOBAL

  • Investigation into the effect of ovarian hormone to the thickness of human endometrial stromal cell sheets in vitro.

    藤田真央, 坂口勝久, 藏本吾郎, 梅津信二郎, 清水達也

    日本機械学会関東支部・精密工学会・茨城大学工学部茨城講演会講演論文集(CD-ROM)   28th  2020

    J-GLOBAL

  • Trends in Tissue Engineering and Cell Sheet Engineering

    坂口勝久

    材料の科学と工学   57 ( 5 )  2020

    J-GLOBAL

display all >>

Research Projects 【 display / non-display

  • 3次元組織工学による次世代食肉生産技術の創出

    Project Year :

    2020.04
    -
    2025.03
     

    Authorship: Coinvestigator(s)

  • 新規不妊治療法開発のための受精卵着床子宮内膜シートの構築

    新規不妊治療法開発のための受精卵着床子宮内膜シートの構築

    Project Year :

    2021.04
    -
    2022.03
     

    坂口勝久

    Authorship: Principal investigator

  • 藻類と動物細胞を用いたサーキュラーセルカルチャーによるバイオエコノミカルな培養食料生産システム

    藻類と動物細胞を用いたサーキュラーセルカルチャーによるバイオエコノミカルな培養食料生産システム

    Project Year :

    2020.12
    -
    2022.03
     

    坂口勝久

    Authorship: Coinvestigator(s)

  • Development of a minimally invasive electronic sheet for ex vivo monitoring of artificial cardiomyocyte tissue

    Challenging Research (Exploratory)

    Project Year :

    2020.07
    -
    2022.03
     

    梅津 信二郎, 坂口 勝久

  • Real-time quantitative prediction of cerebral-aneurysm growth with thrombosis-stratified vascular remodeling

    Grant-in-Aid for Scientific Research (B)

    Project Year :

    2019.04
    -
    2022.03
     

    八木 高伸, 坂口 勝久, 杉田 修啓, 中村 匡徳

display all >>

 

Syllabus 【 display / non-display

display all >>