小柴 健史 (コシバ タケシ)

写真a

所属

教育・総合科学学術院 教育学部

職名

教授

ホームページ

http://www.f.waseda.jp/tkoshiba/

プロフィール

理論計算機科学全般に関心を持つ。現在の主な興味を挙げると,

  • 暗号理論
    • 一方向性関数や疑似乱数生成器などのプリミティブの諸性質の究明
    • 秘匿計算の構成要素(秘密分散,Secure Message Transmission,紛失通信など)
    • 秘匿計算の応用
    • 合理的敵対者に対する安全性(ゲーム理論と暗号理論の関係)
  • 量子計算・量子暗号・量子情報
    • 量子敵対者に対する暗号プリミティブの安全性
    • ブラインド量子計算
    • 量子学習理論
  • 乱数抽出・疑似乱数生成

となるが,これらに限定している訳ではない。最近の技術的関心は,暗号理論・量子情報・学習理論とも繋がっていることもあり,凸最適化と二乗和最適化にある。

兼担 【 表示 / 非表示

  • 教育・総合科学学術院   大学院教育学研究科

学位 【 表示 / 非表示

  • 2001年03月   東京工業大学   博士(理学)

経歴 【 表示 / 非表示

  • 2017年04月
    -
    継続中

    早稲田大学   教育・総合科学学術院 教育学部 数学科   教授

  • 2015年04月
    -
    2017年03月

    埼玉大学   大学院理工学研究科 情報システム工学科   教授

  • 2005年04月
    -
    2015年03月

    埼玉大学   大学院理工学研究科 情報システム工学科   准教授(助教授)

  • 2010年11月
    -
    2011年02月

    パリ大学7   Laboratoire d'Informatique Algorithmique: Fondements et Applications (LIAFA)   訪問研究員

  • 2010年03月
    -
    2010年11月

    パリ大学11   Laboratoire de Recherche en Informatique (LRI)   訪問研究員

全件表示 >>

所属学協会 【 表示 / 非表示

  •  
     
     

    情報処理学会

  •  
     
     

    電子情報通信学会

  •  
     
     

    IEEE

  •  
     
     

    ACM

  •  
     
     

    IACR(国際暗号学会)

 

研究分野 【 表示 / 非表示

  • 情報学基礎論

研究キーワード 【 表示 / 非表示

  • 情報セキュリティ

  • 理論計算機科学

  • プライバシー保護

  • 秘匿計算

  • 量子情報

全件表示 >>

論文 【 表示 / 非表示

  • CricShotClassify: An Approach to Classifying Batting Shots from Cricket Videos Using a Convolutional Neural Network and Gated Recurrent Unit

    Anik Sen, Kaushik Deb, Pranab Kumar Dhar, Takeshi Koshiba

    Sensors   21 ( 8 ) Article 2846 - (19 pages)  2021年04月  [査読有り]  [国際誌]  [国際共著]

    担当区分:最終著者

    DOI

  • A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI

    Faria Zarin Subah, Kaushik Deb, Pranab Kumar Dhar, Takeshi Koshiba

    Applied Sciences   11 ( 8 ) Article 3636 - (16 pages)  2021年04月  [査読有り]  [国際誌]  [国際共著]

    担当区分:最終著者

    DOI

  • Plant Leaf Disease Recognition using Depthwise Separable Convolution Based Models

    Syed Mohammad, Minhaz Hossain, Kaushik Deb, Pranab Kumar Dhar, Takeshi Koshiba

    Symmetry   13 ( 3 ) Article 511 - (29 pages)  2021年03月  [査読有り]  [国際誌]  [国際共著]

    担当区分:最終著者

    DOI

  • Classification of indoor human fall events using deep learning

    Arifa Sultana, Kaushik Deb, Pranab Kumar Dhar, Takeshi Koshiba

    Entropy   23 ( 3 ) Article 328 - (20 pages)  2021年03月  [査読有り]  [国際共著]

    担当区分:最終著者

    DOI

  • Fourier-based verifiable function secret sharing

    Takeshi Koshiba

    Proceedings of 2020 International Symposium on Information Theory and Its Applications (ISITA 2020)     442 - 446  2021年03月  [査読有り]

    担当区分:筆頭著者, 責任著者

    DOI

全件表示 >>

書籍等出版物 【 表示 / 非表示

  • Statistical Trend Analysis of Physically Unclonable Functions: An Approach via Text Mining

    Behrouz Zolfaghari, Khodakhast Bibak, Takeshi Koshiba, Hamid R. Nemati, Pinaki Mitra( 担当: 共著)

    CRC Press  2021年02月 ISBN: 036775455X

  • 観測に基づく量子計算

    小柴健史, 藤井啓祐, 森前智行

    コロナ社  2017年02月 ISBN: 9784339028706

  • 乱数生成と計算量理論

    小柴健史

    岩波書店  2014年11月 ISBN: 9784000069755

  • 確率と計算 ―乱択アルゴリズムと確率的解析―

    Michael Mitzenmacher, Eli Upfal, 小柴健史, 河内亮周( 担当: 共訳)

    共立出版  2009年04月 ISBN: 4320122291

     概要を見る

    高度な理論が必要な確率的検査証明の概念からパソコンのイーサネットカードの実設計まで,ランダム性と確率的手法は現代の計算機科学において主要な役割を果たしている。特にここ20年,確率論を計算機科学に導入する事例が急増している。そして計算機科学を広範かつより複雑な応用に適用できるように,より高度でより洗練された確率的技法が開発されてきている。そのような状況において,ネットワークアルゴリズム理論分野の第一級の研究者であるMichael Mitzenmacher とEli Upfal によって“Probability and Computing”が書き上げられた。本書はその邦訳版である。本書は,計算機科学に関連するランダム性の基本的手法である乱択アルゴリズムやアルゴリズムの確率的解析について詳しく解説している。

    ASIN

  • 量子暗号理論の展開

    小芦雅斗, 小柴健史

    サイエンス社  2008年11月

     概要を見る

    臨時別冊・数理科学 SGCライブラリ67
    第1章 量子鍵配送の基本プロトコル
    第2章 量子鍵配送の安全性とエンタングルメント
    第3章 量子鍵配送の安全性と相補性
    第4章 量子公開鍵暗号
    第5章 量子公開鍵暗号の安全性
    第6章 量子デジタル署名

Misc 【 表示 / 非表示

  • 物理乱数生成の理論的側面

    小柴健史

    電子情報通信学会誌     1072 - 1076  2011年12月  [招待有り]

    記事・総説・解説・論説等(その他)  

  • 暗号論的擬似乱数

    小柴健史

    数理科学   519   21 - 25  2006年09月

  • 量子コンピュータは公開鍵暗号にとって脅威なのか?

    小柴健史

    情報処理   47 ( 2 ) 159 - 168  2006年02月

     概要を見る

    量子コンピュータが実現すると素因数分解等を効率的に解くことができ, RSA暗号等の公開鍵暗号の解読が可能となってしまうことが知られている.量子暗号として有名な量子鍵配送プロトコルはその性質から, 公開鍵暗号にとって変わるものではない.では, 量子コンピュータが実現してしまった場合, 現在のセキュリティ基盤を支える公開鍵暗号系の技術は崩壊してしまうのであろうか?本稿では, 敵対者として量子コンピュータが存在したとしても安全性が保たれるような公開鍵暗号系の技術の最新動向について紹介する.

    CiNii

  • Quantum computational cryptography

    Akinori Kawachi, Takeshi Koshiba

    QUANTUM COMPUTATION AND INFORMATION: FROM THEORY TO EXPERIMENT   102   167 - 184  2006年

    書評論文,書評,文献紹介等  

     概要を見る

    As computational approaches to classical cryptography have succeeded in the establishment of the foundation of the network security, computational approaches even to quantum cryptography are promising, since quantum computational cryptography could offer richer applications than the quantum key distribution. Our project focused especially on the quantum one-wayness and quantum public-key cryptosystems. The one-wayness of functions (or permutations) is one of the most important notions in computational cryptography. First, we give an algorithmic characterization of quantum one-way permutations. In other words, we show a necessary and sufficient condition for quantum one-way permutations in terms of reflection operators. Second, we introduce a problem of distinguishing between two quantum states as a new underlying problem that is harder to solve than the graph automorphism problem. The new problem is a natural generalization of the distinguishability problem between two probability distributions, which are commonly used in computational cryptography. We show that the problem has several cryptographic properties and they enable us to construct a quantum public-key cryptosystem, which is likely to withstand any attack of a quantum adversary.

  • 現代暗号への量子アルゴリズムによる攻撃

    小柴健史

    数理科学   492   31 - 36  2004年06月

Works(作品等) 【 表示 / 非表示

  • ARMADA

    小柴健史  ソフトウェア 

    1987年
    -
    継続中

     概要を見る

    NEC PC-8001mkII用ゲーム

受賞 【 表示 / 非表示

  • Award for Outstanding Research Achievement

    2018年12月   Asia Pacific Society for Computing and Information Technology  

  • Outstanding paper award

    2018年10月   GameSec 2018 (Conference on the Decision and Game Theory for Security)  

共同研究・競争的資金等の研究課題 【 表示 / 非表示

  • フーリエ基底を用いた安全な関数分散技術の基盤構築

    挑戦的研究(萌芽)

    研究期間:

    2019年06月
    -
    2022年03月
     

    小柴 健史

    担当区分: 研究代表者

     概要を見る

    関数分散は近年見出された新しい暗号技術であり,プライバシーを保ちつつ関数計算を分散評価させる技術で,マルチパーティ秘匿計算などに広く応用を持つと期待されている。その一方でその構築法は簡易ではなく分散させるための自由度が十分でないという問題点がある。本研究において,関数分散と呼ばれる暗号技術に新たな可能性を見出すことを目標として,関数がフーリエ関数の線型結合として表現される事実に着目する。まず,研究代表者自身によるフーリエ基底ベースの従来方式を統一的に扱うためのフレームワークを構築し,関数分散のための基盤整備を行なった。特に,少ない個数のフーリエ基底の線形結合で表現できる関数に対して,Monotone Span Program(MSP)を利用して実現されるアクセス構造を持つ線形秘密分散と組み合わせる方式の一般的性質について考察し,分散計算させるための自由度が高く,かつ,効率的に動作する関数分散を構築するための十分条件を得た。また,少ない個数のフーリエ基底の線形結合で表現でき,かつ「自然な」関数の候補としての定数段ブール回路について,フーリエ表現サイズと関数近似精度との関連について評価を行なった。さらに,秘密関数を持つディーラーが不正をはたらいてもその不正を一般ユーザが検出可能な検証可能秘密分散のアイデアを関数秘密分散に導入することを目指して,関数分散技術に要求される性質を抽出し,プロトタイププロトコルを構築した。

  • インセンティブを考慮した暗号基盤技術の構築

    基盤研究(B)

    研究期間:

    2017年04月
    -
    2021年03月
     

    田中 圭介, 河内 亮周, 安永 憲司, 小柴 健史

    担当区分: 研究分担者

     概要を見る

    本研究の目的は、インセンティブの設計を様々な暗号技術 (電子署名・相手認証・ブロックチェーン技術) に拡張することである。このため、研究課題を2つ設定し、各課題に対して研究期間を大きく3つに分けている。課題(A)の既存暗号技術に対するインセンティブ設計では、合理的証明にもとづいた委託計算で利用されている報酬の技術的な設定手法を電子署名や相手認証などへ応用し、さらにその手法をその他の技術へ適用可能な形へ一般化させる。課題(B)のブロックチェーンに対するインセンティブ設計では、ブロックチェーンに対して適切にインセンティブを設定する手法を考案し、そのインセンティブの設定を、課題(A)で発展させたインセンティブの技術的設定手法で実現する。
    課題(A)に対しては、今年度は2018年度までに行った第1フェーズ「インセンティブ設計技法に関する調査と研究」で得られた知見を活用し、第2フェーズ「インセンティブを用いた電子署名・相手認証のモデルと技術の設計」を行った。今年度は特に、これらの要素に密接に関わるSecure Message Transmission (SMT)と呼ばれる要素に着目し、複数ある通信路がすべての敵に支配されたとしても、合理的な敵を考える場合には、安全に通信を行うことができることを示した。
    課題(B)に対しては、今年度は2018年度までに行った第1フェーズ「ブロックチェーンに関する調査と研究」で得られた知見を活用し、第2フェーズ「インセンティブを用いたブロックチェーンのモデルと技術の設計」を行った。典型的なproof-of-workにおいてはハッシュ関数の特定の要件を満たす値を出力するような入力を見つけることが行われている。これはある種の計算問題を解くことに対応しており、この問題を別の計算問題に置き換えたときのインセンティブ設計についての可能性についてに考察を行った。

  • 量子プロトコル理論の線的展開

    基盤研究(A)

    研究期間:

    2016年04月
    -
    2021年03月
     

    小柴 健史, 西村 治道, ルガル フランソワ, 田中 圭介, 河内 亮周, 安永 憲司, 松本 啓史, 堀山 貴史, 小林 弘忠

    担当区分: 研究代表者

     概要を見る

    量子プロトコルに関しての基礎的研究として,量子計算機を持つと主張するサーバに対する量子計算機を持つかのクライアントによる古典的検証可能性に,報酬の概念を導入するモデルを提案し,ゲーム理論的な形での同課題の解決という新しい方向性を見出した。またクライアントがサーバに計算の内容を秘匿して量子計算をさせるブラインド量子計算の基本的な設定での不可能性を示し,さらに弱い量子計算モデルによるサンプリングの不可能性も示した。
    量子分散プロトコルの優位性の確立に向けては,大きな進展を得ることができた。具体的には,分散計算の中核的な問題である「全対最短経路問題」に対して,最良の古典分散プロトコルより高速な量子分散プロトコルの開発に成功した。帯域幅の限られているモデルにおいて,三角形発見問題を高速に解く量子分散プロトコルを構築できた。
    量子プロトコル理論へ基礎を与えるための古典暗号プロトコル研究でも貢献した。セキュアメッセージ伝達プロトコルについて,複数の独立した敵対者が存在するモデルでは,すべての通信路が支配されたとしてもゲーム理論的な安全性を達成できることを示した。これは,敵対者がすべての資源を支配した場合に自明に安全性が成り立たない古典的な安全性では実現できない結果である。さらに,並列計算が容易な効率の良いコミットメント方式を提案し,その耐量子安全性を評価した。情報理論的な安全性を持つ秘密計算の一種である条件付き秘密開示方式などの通信効率および使用乱数長の限界を評価した。

  • 通信複雑性に対するブラインド量子計算による方法論の確立

    挑戦的萌芽研究

    研究期間:

    2014年04月
    -
    2017年03月
     

    小柴 健史

    担当区分: 研究代表者

     概要を見る

    幾つかの計算問題について量子通信複雑度を議論するために,比較対象として(古典秘匿計算の一方式としての)準同型暗号によるプライバシー保護データ検索の効率的なプロトコルを提案し計算機実験を通して実効性を確かめた。また,量子ブラインド計算において参加者が不正を行ったときに,情報理論的安全性を確保しつつ,それを第三者が検証できる仕組みを導入することに成功した。

  • 統計力学からの計算限界解明へのアプローチ

    新学術領域研究(研究領域提案型)

    研究期間:

    2012年06月
    -
    2017年03月
     

    渡辺 治, 安藤 映, 伊東 利哉, 小柴 健史, 山本 真基, 森 立平, 樺島 祥介, 福島 孝治

    担当区分: 研究分担者

     概要を見る

    統計力学的な観点で提案されてきた計算の解析手法や計算に関する問題について,計算論的な観点から検討を行った。その結果,問題例の計算困難さの変化に関して,これまでの枠組みでは捉えられていなかった困難さの変化を明らにすることに成功し,計算困難さの変化を研究するための新しい,より頑健な枠組みを提案した。この結果は,暗号の安全性の基礎にもなる。一方,解の構造の特徴付けや,解の数え上げ問題など,統計力学の基本問題に関しても,効率的アルゴリズムの開発や,その基礎となる知見を得ることができた。

全件表示 >>

講演・口頭発表等 【 表示 / 非表示

  • On Public Verifiability for Secure Delegated Quantum Computation

    Takeshi Koshiba  [招待有り]

    Workshop on Quantum Information, Computation, and Foundation, QICF 2020   (オンライン)  the Quantum Information Unit and Yukawa Institute for Theoretical Physics, Kyoto University  

    発表年月: 2020年09月

  • Recent Progress in Quantum Computational Cryptography

    Takeshi Koshiba  [招待有り]

    The 6th IEEE Conference on Computer Science and Data Engineering   (Melbourne) 

    発表年月: 2019年12月

  • On Public Verifiability for Secure Delegated Quantum Computation

    Takeshi Koshiba  [招待有り]

    研究集会「量子計算, ポスト量子暗号, 量子符号の融合と深化」   (福岡市)  マス・フォア・インダストリ研究所,九州大学  

    発表年月: 2019年11月

  • Homomorphic Encrypion and Its Applications

    Takeshi Koshiba  [招待有り]

    The 2018 International Conference for Top and Emerging Computer Scientists (IC-TECS 2018)   (Taipei)  Asia Pacific Society for Computing and Information Technology  

    発表年月: 2018年12月

  • 安全な代理量子計算

    小柴健史  [招待有り]

    情報理論研究会「若手研究者のための講演会」@第41回情報理論とその応用シンポジウム(SITA 2018)   (スパリゾートハワイアンズ, いわき市)  電子情報通信学会 情報理論とその応用サブソサイエティ  

    発表年月: 2018年12月

全件表示 >>

特定課題研究 【 表示 / 非表示

  • ゲーム理論的合理性にもとづくセキュアメッセージ転送

    2019年   安永憲司

     概要を見る

    セキュアメッセージ転送は2者間の暗号プロトコルであり,複数の通信チャネルが利用でき,そのうちの幾つかの通信チャネルが敵対者に支配されたとしても,プライバシーを保ちつつメッセージを確実に伝達する方式である。経済的合理性を考慮したゲーム理論の観点から複数の独立した敵対者がある種の合理性をもって行動をしたとき,全チャネルが複数の敵対者に支配されたとしてもセキュアメッセージ転送が可能であることを示すことができた。これは,通常の暗号理論における敵対者の設定や経済的合理性の敵対者でも単一の敵対者の場合は不可能なことであり,この成果をセキュリティに関するゲーム理論的研究に関するトップ国際会議のGameSec2019で発表した。<!-- /* Font Definitions */ @font-face {font-family:"MS 明朝"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-alt:"MS Mincho"; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-536870145 1791491579 134217746 0 131231 0;}@font-face {font-family:Century; panose-1:2 4 6 4 5 5 5 2 3 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:647 0 0 0 159 0;}@font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face {font-family:"\@MS 明朝"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-536870145 1791491579 134217746 0 131231 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0mm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:"Century",serif; mso-fareast-font-family:"MS 明朝"; mso-bidi-font-family:"Times New Roman"; mso-font-kerning:1.0pt;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:"Century",serif; mso-ascii-font-family:Century; mso-fareast-font-family:"MS 明朝"; mso-hansi-font-family:Century; mso-font-kerning:0pt;}size:612.0pt 792.0pt; margin:99.25pt 30.0mm 30.0mm 30.0mm; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;}div.WordSection1 {page:WordSection1;}<!-- /* Font Definitions */ @font-face {font-family:"MS 明朝"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-alt:"MS Mincho"; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-536870145 1791491579 134217746 0 131231 0;}@font-face {font-family:Century; panose-1:2 4 6 4 5 5 5 2 3 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:647 0 0 0 159 0;}@font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536870145 1107305727 0 0 415 0;}@font-face {font-family:"\@MS 明朝"; panose-1:2 2 6 9 4 2 5 8 3 4; mso-font-charset:128; mso-generic-font-family:modern; mso-font-pitch:fixed; mso-font-signature:-536870145 1791491579 134217746 0 131231 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0mm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:"Century",serif; mso-fareast-font-family:"MS 明朝"; mso-bidi-font-family:"Times New Roman"; mso-font-kerning:1.0pt;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; font-family:"Century",serif; mso-ascii-font-family:Century; mso-fareast-font-family:"MS 明朝"; mso-hansi-font-family:Century; mso-font-kerning:0pt;}size:612.0pt 792.0pt; margin:99.25pt 30.0mm 30.0mm 30.0mm; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;}div.WordSection1 {page:WordSection1;}

  • 秘匿計算における鍵伝播機構の計算理論構築

    2018年   森前智行

     概要を見る

    量子計算の枠組みで秘匿代理計算を行う暗号プロトコルとしてBroadbent, Fitzsimons, Kashefiの方法(BFK09法)やその発展版であるHayashi&amp;Morimaeの方法(HM12法)がある。BFK09方法では量子情報を量子ワンタイムパッド法で完全秘匿を達成するのにパウリ行列X及びZをどう適用するのかという鍵情報を保持する。秘匿された量子情報に演算を施すことは鍵情報をどう変遷させるかに対応する。古典計算での実現可能性を究明するために鍵伝播メカニズムを解明することを考えた。両方法を解析した副産物として,古典クライアントではある種のブラインド量子計算は実現不可能であることを示した。

  • セキュアメッセージ転送の限界突破のためのモデル条件緩和

    2018年   安永憲司

     概要を見る

    セキュアメッセージ転送は2者間の暗号プロトコルで,2者間の間に利用できるチャネルが複数存在し,複数存在するチャネル数の内何本かを敵に支配され,改ざん・盗聴を許す設定である。セキュアメッセージ転送が要求する性質は秘匿性と信頼性であり,両性質が完全な意味で達成される条件は2者間のチャネル数 Nと敵が支配するチャネル数Tの間にN≧2T+1を満たすことが必要であることが示されている。敵対者モデルとして経済的合理性に従い,かつ,妥当なモデルを構築し,そのモデルにおいては,N≧T+1の場合でも完全なセキュアメッセージ転送が構築できることを示すことに成功した。本成果はGameSec2018で研究発表し,Outstanding Paper Awardを受賞した。

  • 秘匿計算における鍵伝播メカニズムの解明

    2017年   Go Sato, Tomoyuki Morimae

     概要を見る

    量子計算の枠組みで秘匿代理計算を行う暗号プロトコルとしてBroadbent, Fitzsimons, Kashefiの方法(BFK09法)がある。BFK09法では量子情報を量子ワンタイムパッド法で完全秘匿を達成するのにパウリ行列X及びZをどう適用するのかという鍵情報を保持する。秘匿された量子情報に演算を施すことは鍵情報をどう変遷させるかに対応する。古典計算での実現可能性を究明するためにBFK09法の鍵伝播メカニズムを解明することを考えた。その検討過程としてBFK09法の発展版のHayashi-Morimaeプロトコルを解析し,副産物として公開検証可能はブラインド量子計算プロトコルを考案した。

  • プライバシー保護可能な構造化クエリを許容する暗号化データベース

    2017年   Saha Tushar Kanti, Mayank

     概要を見る

    Ring LWE (Learning With Error)問題に基づく準同型暗号に対してデータ符号化法を工夫することで,ベクトルを暗号化したままの状態で内積計算の高速計算を実現する方法(報告者の既存研究成果)がある。この技術を応用し,暗号化データベース内の複数データエントリに対して,論理和や論理積を用いて構造的な条件を満たすデータを高速に抽出できるような方法を開発し,従来手法と計算機比較実験をすることで新手法の実効性を実証した。

 

現在担当している科目 【 表示 / 非表示

全件表示 >>

担当経験のある科目(授業) 【 表示 / 非表示

  • 情報数学3&4[アルゴリズムとデータ構造]

    早稲田大学  

    2021年04月
    -
    継続中
     

  • 応用数学6[計算理論]

    早稲田大学  

    2021年04月
    -
    継続中
     

  • 応用数学5[形式言語理論]

    早稲田大学  

    2021年04月
    -
    継続中
     

  • 情報数学特論I-2[暗号基礎理論 || ブール関数解析]

    早稲田大学,大学院  

    2017年04月
    -
    継続中
     

  • 情報数学特論I-1[量子計算]

    早稲田大学,大学院  

    2017年04月
    -
    継続中
     

全件表示 >>

 

社会貢献活動 【 表示 / 非表示

  • 量子コンピューター時代の情報セキュリティ

    会津大学  夢の科学技術を子供たちの手に−シンポジウム2006  (会津大学) 

    2006年11月
    -
     

メディア報道 【 表示 / 非表示

  • 未来の情報化社会を守る

    新聞・雑誌

    執筆者: 本人以外  

    埼玉新聞  

    サイ・テクこらむ  

    2014年04月

  • [Future Story] 絶対に破れない量子暗号

    会誌・広報誌

    執筆者: 本人以外  

    三機工業株式会社広報部   Harmony  

    No.44, pp.12-13  

    2009年03月