Updated on 2022/05/25


SUKO, Tota
Faculty of Social Sciences, School of Social Sciences
Job title
Associate Professor

Concurrent Post

  • Affiliated organization   Global Education Center

Research Institute

  • 2021

    大学総合研究センター   兼任センター員

  • 2020

    理工学術院総合研究所   兼任研究員


  • 早稲田大学   博士(工学)


Research Areas

  • Intelligent informatics

  • Statistical science

  • Theory of informatics

Research Interests

  • ベイズ統計、統計的学習理論、ビジネス統計、データマイニング、情報理論


  • A new latent class model for analysis of purchasing and browsing histories on EC sites

    Masayuki Goto, Kenta Mikawa, Shigeichi Hirasawa, Manabu Kobayashi, Tota Suko, Shunsuke Horii

    Industrial Engineering and Management Systems   14 ( 4 ) 335 - 346  2015.12

     View Summary

    The electronic commerce site (EC site) has become an important marketing channel where consumers can purchase many kinds of products
    their access logs, including purchase records and browsing histories, are saved in the EC sites' databases. These log data can be utilized for the purpose of web marketing. The customers who purchase many product items are good customers, whereas the other customers, who do not purchase many items, must not be good customers even if they browse many items. If the attributes of good customers and those of other customers are clarified, such information is valuable as input for making a new marketing strategy. Regarding the product items, the characteristics of good items that are bought by many users are valuable information. It is necessary to construct a method to efficiently analyze such characteristics. This paper proposes a new latent class model to analyze both purchasing and browsing histories to make latent item and user clusters. By applying the proposal, an example of data analysis on an EC site is demonstrated. Through the clusters obtained by the proposed latent class model and the classification rule by the decision tree model, new findings are extracted from the data of purchasing and browsing histories.


  • 詳細な学習ログを用いた英語リーディング過程の分析(2) ログデータから見た成績との関係

    中野美知子, 吉田諭史, 須子統太, 玉木欽也, ギエルモ エンリケズ

    情報処理学会第77回全国大会 講演論文集   4   503 - 504  2015.03

  • 電子教材とワークシートを用いた統計基礎教育におけるブレンディッドラーニングに関する一考察

    小泉大城, 須子統太, 平澤茂一

    情報処理学会第77回全国大会 講演論文集   4   605 - 606  2015.03

  • Asymptotics of Bayesian Inference for a Class of Probabilistic Models under Misspecification

    Nozomi Miya, Tota Suko, Goki Yasuda, Toshiyasu Matsushima

    IEICE Trans. FUNDAMENTALS   Vol.E97-A ( No.12 ) 2352 - 2360  2014.12  [Refereed]

  • プライバシー保護機能を持つ分散型正則化最小二乗法について

    須子統太, 堀井俊佑, 小林学

    第37回情報理論とその応用シンポジウム予稿集(SITA2014)     300 - 305  2014.11

  • An Analysis of Purchasing and Browsing Histories on an EC Site Based on a New Latent Class Model

    Masayuki Goto, Kenta Mikawa, Manabu Kobayashi, Shunsuke Horii, Tota Suko, Shigeichi Hirasawa

    The 1st East Asia Workshop on Industrial Engineering    2014.11

  • Asymptotics of MLE-based Prediction for Semi-supervised Learning

    Goki Yasuda, Nozomi Miya, Tota Suko, Toshiyasu Matsushima

    Proc. of 2012 International Symposium on Information Theory and its Applications (ISITA2014)     343  2014.10

  • 統計基礎学修のためのブレンディッドラーニングの取り組み

    小泉 大城, 須子 統太

    平成26年度私立大学情報教育協会 ICT利用による教育改善研究発表会 資料集     28 - 29  2014.08

  • プライバシー保護機能を持つ線形回帰モデルにおける最小二乗推定量の分散計算法について

    須子統太, 堀井俊佑, 小林学, 後藤正幸, 松嶋敏泰, 平澤茂一

    日本経営工学会論文誌   Vol.65 ( No.2 ) 77 - 78  2014.07

  • PDFファイルをベースとした電子教材作成支援システム

    荒本 道隆, 小泉 大城, 須子 統太, 平澤 茂一

    情報処理学会 第76回全国大会 講演論文集   4  2014.03

  • 統計基礎教育のためのタブレット型端末向け電子教材の試作と評価

    小泉 大城, 須子 統太, 平澤 茂一

    情報処理学会 第76回全国大会 講演論文集   4   361 - 362  2014.03

  • 判別を目的としたプライバシー保護データ解析に関する一考察

    後藤正幸, 須子統太, 小林 学, 平澤茂一

    日本経営工学会 平成25年春季大会予稿集     54 - 55  2013.05

  • 大学教育のための電子教材の試作 〜 タブレット端末向け統計基礎教材 〜

    小泉大城, 須子統太, 平澤茂一

    情報処理学会 第75回全国大会 講演論文集   4   467 - 468  2013.03

  • Hierarchical Multi-label Classification on Statistical Decision Theory

    YAMAMOTO Kiyohito, SUKO Tota, MATSUSHIMA Toshiyasu

      112 ( 454 ) 101 - 106  2013.02

     View Summary

    This paper considers multi-label classification on statistical decision theory. In Label Power Set format, multi-label classification is equivalent to multi-class classification. However, the number of classes increases exponentially as elements in label set grow in number. Hence in case of many labels, a prohibitive computational cost problem occurs. To avoid this problem, some studies have been done and one of them used hierarchical structure. On the other hand, optimal classification method based on bayes rule has been attracted much attention recently. We apply this optimal classification method based on bayes rule to multi-label classification problem. Moreover, assuming hierarchical structure on labels, we propose efficient classification algorithms which reduce computational cost to linear order on the number of elements in label set. Since optimal classification based on bayes rule differs calculation formula depending loss function, we present algorithms in case of O-1 loss and hamming loss, respectively.


  • Iterative Multiuser Joint Decoding based on Augmented Lagrangian Method

    Shunsuke Horii, Tota Suko, Toshiyasu Matsushima, Shigeichi Hirasawa

    電子情報通信学会技術研究報告   IT2013-34   13 - 17  2013

  • 真の分布を含むとは限らない階層モデル族に対するベイズ推定の漸近評価

    宮希望, 須子統太, 安田豪毅, 松嶋敏泰

    第36回情報理論とその応用シンポジウム予稿集(SITA2013)     665 - 670  2013

  • 半教師付き学習における一致推定量に基づく予測の漸近評価,

    安田豪毅, 宮希望, 須子統太, 松嶋敏泰

    第36回情報理論とその応用シンポジウム予稿集(SITA2013)     659 - 664  2013

  • 次数未知の多変数多項式回帰モデルにおけるベイズ予測

    山本粋士, 須子統太, 松嶋敏泰

    第36回情報理論とその応用シンポジウム予稿集(SITA2013)     520 - 524  2013

  • 線形回帰モデルにおけるベイズ決定理論に基づく予測の近似手法

    都築遼馬, 須子統太, 松嶋敏泰

    第36回情報理論とその応用シンポジウム予稿集(SITA2013)     438 - 441  2013

  • プライバシー保護を目的とした線形回帰モデルにおける事後確率最大推定量の分散計算法について

    中井 祥人, 須子統太, 松嶋敏泰

    電子情報通信学会技術研究報告   IBISML, 112(454)   47 - 54  2013

  • 木構造を仮定した信号に対する拡張ラグランジュ法に基づいた圧縮センシングについて

    堀井俊佑, 須子統太, 松嶋敏泰

    第35回情報理論とその応用シンポジウム予稿集     320 - 325  2012

  • プライバシー保護を目的とした線形回帰モデルにおける最小二乗推定量 の分散計算法について

    須子統太, 堀井俊佑, 小林学, 後藤正幸, 松嶋敏泰, 平澤茂一

    電子情報通信学会技術研究報告   IBISML2012-49   107 - 111  2012

  • プライバシー保護を目的とした回帰分析の拡張について

    須子統太, 堀井俊佑, 小林学, 松嶋敏泰, 平澤茂一

    第35回情報理論とその応用シンポジウム予稿集     562 - 567  2012

  • Asymptotics of Bayesian estimation for nested models under misspecification

    Nozomi Miya, Tota Suko, Goki Yasuda, Toshiyasu Matsushima


     View Summary

    We analyze the asymptotic properties of the cumulative logarithmic loss in the decision problem based on the Bayesian principle and explicitly identify the constant terms of the asymptotic equations as in the case of previous studies by Clarke and Barron and Gotoh et al. We assume that the set of models is given that identify a class of parameterized distributions, it has a nested structure and the source distribution is not contained in all the families of parameterized distributions that are identified by each model. The cumulative logarithmic loss is the sum of the logarithmic loss functions for each time decision-, e. g., the redundancy in the universal noiseless source coding.

  • Asymptotics of Bayesian prediction for misspecified models

    MIYA Nozomi, SUKO Tota, YASUDA Goki, MATSUSHIMA Toshiyasu

    IEICE technical report. Information theory   111 ( 142 ) 71 - 76  2011.07

     View Summary

    We consider the sequential prediction problem which is the prediction of the next symbol based on the sequential observation of source symbols. The log loss function in this problem is classified into two types, the instantaneous loss and the cumulative loss. The former is the loss function for the prediction of the only next one symbol. The latter is the sum of the instantaneous loss. We consider the Bayesian prediction for this problem. In Bayesian prediction, it is assumed that the true model lies within a parametrized family of distributions. However, it can be considered that it lies without a parametrized family practically(misspecified models), the true model being unknown. We analyze asymptotics of the cumulative loss for Bayesian prediction under this situation.


  • 真のモデルを含まないパラメトリックモデル族に対するベイズ予測の漸近評価

    宮希望, 須子統太, 松嶋敏泰

    電子情報通信学会技術研究報告   IT2011-11   71 - 76  2011

  • A Note on Linear Programming Based Communication Receivers

    S. Horii, T. Suko, T. Matsushima, S. Hirasawa

    in Proc. of the 3rd International Castle Meeting on Coding Theory and Applications     141 - 146  2011

  • Bayes universal source coding scheme for correlated sources

    Tota Suko, Shunsuke Horii, Toshiyasu Matsushima, Shigeichi Hirasawa

    Proceedings of the 1st IEEE African Winter School on Information Theory and Communications 2010     27  2010.05

  • Maximum likelihood detection for DS-CDMA using Gr�{o}bner bases

    Shunsuke Horii, Tota Suko, Toshiyasu Matsushima, Shigeichi Hirasawa

    第33回情報理論とその応用シンポジウム予稿集     489 - 493  2010

  • 複数の相関のある情報源に対するベイズ符号化について

    須子統太, 堀井俊佑, 松嶋敏泰, 平澤茂一

    第33回情報理論とその応用シンポジウム予稿集     759 - 763  2010

  • On the Bayesian Forecasting Algorithm under the Non-Stationary Binomial Distribution with the Hyper Parameter Estimation

    Daiki Koizumi, Tota Suko, Toshiyasu Matsushima

    Proceeding of Ninth Valencia International Meeting on Bayesian Statistics     167 - 168  2010

  • Asymptotic property of universal lossless coding for independent piecewise identically distributed sources

    Tota Suko, Toshiyasu Matsushima, Shigeichi Hirasawa

    Journal of Discrete Mathematical Sciences and Cryptography   13 ( 4 ) 383 - 391  2010

     View Summary

    The universal lossless source coding problem is one of the most important problem in communication systems. The aim of source coding is to compress data to reduce costs in digital communication. Traditional universal source coding schemes are usually designed for stationary sources. Recently, some universal codes for nonstationary sources have been proposed. Independent piecewise identically distributed (i.p.i.d.) sources are simple nonstationary sources that parameter changes discontinuously. In this paper, we assume new i.p.i.d. sources class, and we prove that Bayes codes minimize the mean redundancy when parameter transition pattern is known and parameter is unknown. © 2010 Taylor &amp
    Francis Group, LLC.


  • 外れ値データの発生を含む回帰モデルに対するベイズ予測アルゴリズム

    須子統太, 松嶋敏泰, 平澤茂一

    情報処理学会論文誌数理モデル化と応用   Vol.1 ( No.1 ) 17 - 26  2008.09

  • 拡張された有本-Blahutアルゴリズムの大域的収束性について

    安井謙介, 須子統太, 松嶋敏泰

    電子情報通信学会論文誌   Vol.91-A ( No.9 ) 846 - 860  2008.09

  • A Note on Multiuser Detection Algorithms for CDMA based on the Belief Propagation Algorithm

    S. Horii, T. Suko, T. Matsushima, S. Hirasawa

    電子情報通信学会技術報告   IT2007-26   7 - 12  2008

  • 区間で一定なパラメータを持つ非定常情報源の漸近的な性質について

    須子統太, 松嶋敏泰, 平澤茂一

    第31回情報理論とその応用シンポジウム予稿集     815 - 818  2008

  • マーキング仮定に基づくフィンガープリンティング符号のキャパシティについて

    柴田大介, 須子統太, 松嶋敏泰

    暗号と情報セキュリティシンポジウム予稿集    2008

  • Multiuser detection algorithm for CDMA based on the belief propagation algorithm

    Shunsuke Horii, Tota Suko, Toshiyasu Matsushima, Shigeichi Hirasawa

    IEEE International Symposium on Spread Spectrum Techniques and Applications     194 - 199  2008

     View Summary

    Optimum detection for the multiuser code-division multiple-access channel is prohibitively complex. This paper considers new iterative multiuser detection algorithm based on the belief propagation algorithm. Previously, the idea to apply the belief propagation algorithm to multiuser detection problem was suggested , however, it was believed that to apply the belief propagation algorithm to the detection problem is impossible because it requires an exponentially large amount of computation. It was the only fact that the parallel interference canceller is derived as an approximation of the belief propagation. In this paper, we show that the belief propagation algorithm can be applied to the detection problem by converting the factor graph structure. Performance of the detector based on the belief propagation algorithm is better than that of the parallel interference canceller. © 2008 IEEE.


  • 外れ値データの発生を含む回帰モデルに対するベイズ予測アルゴリズム

    須子統太, 松嶋敏泰, 平澤茂一

    情報処理学会研究報告   2007-MPS-67   13 - 16  2007

  • An Algorithm for Computing the Secrecy Capacity of Broadcast Channels with Confidential Messages

    Kensuke Yasui, Tota Suko, Toshiyasu Matsushima

    Proceedings of IEEE International Symposium on Information Theory    2007  [Refereed]

  • 密情報を持つBroadcast Channel の Secrecy Capacity 計算アルゴリズム

    安井謙介, 須子統太, 松嶋敏泰

    第29回情報理論とその応用シンポジウム予稿集     69 - 73  2006

  • Multiuser Detection Algorithms for CDMA based on the Massage Passing Algorithms

    Shunsuke Horii, Tota Suko, Toshiyasu Matsushima

    Proceeding of 2006 Hawaii, IEICE and SITA Joint Conference on Information Theory (HISC2006)     17 - 22  2006

  • 電子透かしにおける秘匿容量の計算手法に関する研究

    安井謙介, 須子統太, 松嶋敏泰

    電子情報通信学会技術報告   IT2005-47   29 - 34  2005

  • 使用ユーザが変化するDS/CDMAシステムにおけるベイズ最適なマルチユーザ検出について

    堀井俊佑, 須子統太, 松嶋敏泰

    第28回情報理論とその応用シンポジウム予稿集     781 - 784  2005

  • 電子透かしにおける秘匿容量計算計算アルゴリズム

    安井謙介, 須子統太, 松嶋敏泰

    電子情報通信学会技術報告   IT2005-94   177 - 182  2005

  • BW変換を用いたユニバーサル符号化アルゴリズムに関する研究

    須子統太, 松嶋敏泰, 平澤茂一

    第28回情報理論とその応用シンポジウム予稿集     343 - 346  2005

  • 階層モデルにおけるベイズ予測の漸近評価に関する一考察

    宅味丈夫, 須子統太, 松嶋敏泰

    第27回情報理論とその応用シンポジウム予稿集     639 - 642  2004

  • 区間で定常なパラメータを持つ非定常情報源におけるベイズ符号の冗長度について

    須子統太, 松嶋敏泰, 平澤茂一

    電子情報通信学会技術報告   IT2004-22   23 - 28  2004

  • 外れ値データの発生を考慮にいれた回帰モデルにおけるベイズ予測法について

    須子統太, 仲川文隆, 松嶋敏泰

    2004年情報論的学習理論ワークショップ(IBIS2004)予稿集     34 - 39  2004

  • 区間で一定なパラメータを持つ非定常情報源におけるベイズ符号の冗長度について

    須子統太, 松嶋 敏泰, 平澤 茂一

    第27回情報理論とその応用シンポジウム予稿集     523 - 526  2004

  • 決定木モデルにおける予測アルゴリズムについて

    須子統太, 野村亮, 松嶋敏泰, 平澤茂一

    電子情報通信学会技術報告   COMP2003-36   93 - 98  2003

  • 区間で一定なパラメータを持つ情報源におけるベイズ符号化法について

    須子統太, 松嶋敏泰, 平澤茂一

    第26回情報理論とその応用シンポジウム予稿集     165 - 168  2003

  • 相関のある時系列の状態空間によるモデル化と予測

    鈴木悠哉, 須子統太, 松嶋敏泰

    電子情報通信学会技術報告   IT2003-38   87 - 92  2003

  • ベイズ決定理論に基づく予測における近似手法について

    江口公盛, 須子統太, 松嶋敏泰

    第26回情報理論とその応用シンポジウム予稿集     703 - 706  2003

  • 拡張された階層モデルにおける予測アルゴリズムについて

    須子統太, 野村亮, 松嶋敏泰

    第25回情報理論とその応用シンポジウム予稿集     755 - 758  2002

▼display all

Books and Other Publications

  • IT Text 確率統計学

    須子統太, 鈴木誠, 浮田善文, 小林学, 後藤正幸

    オーム社  2010.09 ISBN: 9784274209130

Research Projects

  • 様々な低品質データに対応するロバストな分類アルゴリズムの開発

    Project Year :


     View Summary


  • Fundamental study on business analytics technologies on big data era

    Project Year :


     View Summary

    The objective of this study is to develop and deepen large-scale and diverse business data analytical technology (business analytics), propose new analytical models corresponding to various business data.Specifically, we promoted research on the following individual themes: 1) development of data analytics technology for database information on EC sites, 2) development of analytical technique of marketing information accumulated as text data, 3) development of statistical model for recommendar systems, 4) Theoretical analysis of Web marketing model using information retrieval and recommendation technology, 5) Development of analytical method for high dimensional and sparse large scale data, 6) Development of privacy protection data analysis technology

  • A Unified Analysis and Optimization of Information Security System with Probabilistic Components from Viewpoints of Convenience and Safety

    Project Year :


     View Summary

    Information security problem with probabilistic components has been formulated by probabilistic models. Theoretical criteria for evaluation such as convenience and safety have been defined clearly and optimal attack or an authentication method has been derived theoretically. Theoretical safety bounds have been evaluated with respect to mathematical models with unified framework for each cipher or security system. A theoretical safety bound or optimality has been clarified with respect to a tradeoff between convenience and safety. New theoretical criteria have been derived for information security systems. Approximation algorithms with high performance for optimal attack or an authentication method have been constructed applying results of studies on problems in related fields such as learning or optimization theory that is formulated by probabilistic models equivalent to our study. Convenience or safety of information security systems has been simulated by applying these algorithms

  • Distributed Regression Protocols for Privacy Preserving Data Mining

    Project Year :


     View Summary

    In this research, we study a privacy-preserving linear regression analysis. We consider the situation that a number of users have different data. They don’t want to show their data each other, but they want to calculate a certain estimator using all users data. Although some protocols conventionally proposed, we proposed some kind of protocols of distributed calculation method for practical use. we became privacy-preserving linear regression analysis available, if there is multicollinearity ,or sparse data

  • Text Mining for Languages of All Ages and Countries

    Project Year :


     View Summary

    We proposed the accumulation method, which is a language-independent text classification method that is based on the character N-gram. The accumulation method does not depend on the language structure, because this method uses the character N-gram to form index terms. If text documents are expressed in Unicode, then the accumulation method can classify documents using the same algorithm. Therefore, we classified English, Japanese, Korean, and Chinese text documents. As a result, the highest macro-averaged F-measures of the proposed method were 94.5% for the English Reuters-21578, 88.5% for the Japanese CD-Mainichi 2002 data set, 90.2% for the Korean Hankyoreh 2008 data set, and 92.6% for the People's Daily 2009-2010 data set. Thus, we obtained good results for these languages. Moreover, we were able to construct a mathematical model of the accumulation method and were able to clarify the mathematical meaning.

Specific Research

  • ナノスケール半導体デバイス設計のための機械学習アルゴリズムの開発

    2021   村口 正和

     View Summary


  • 低品質データ解析アルゴリズムの一般化と実データへの適用


     View Summary


  • 先端データ科学アルゴリズムの人文社会科学分野への応用


     View Summary


  • 低品質データのための次世代データ解析基盤の構築


     View Summary


  • クラウド環境における確率モデルに基づく無歪み高圧縮符号化に関する研究


     View Summary

    膨大な量のディジタルデータが流通する現代において,データ圧縮(情報源符号化)技術は,ネットワーク社会を支える重要な基盤技術のひとつとなっている.現在,主に使われているデータ圧縮技術は80 年代にZiv らによって提案されたLempel-Ziv 法(LZ 法)を基礎においている.具体的には,gzip などの圧縮ツールに用いられている手法である.LZ 法が提案されて以来,LZ法をベースにした改良法の研究が数多くされてきたものの,90 年代後半になると一定の成果を得たことで大きな進展はなくなった.また情報ネットワークの高速化に伴い,アルゴリズムの改善によるメリットが薄れてきたため,圧縮技術に関する研究は1 度は収束を迎えたかのように見えた.しかし近年,ネットワークの高速化が頭打ちになりつつある中,クラウドコンピューティングの発達やディジタルコンテンツの大容量化により,ネットワークトラヒックやサーバの記憶容量は増加の一途を辿っている.そのため,データ圧縮技術のさらなる発展が求められるようになり,今後のネットワーク社会における重要な課題のひとつであると考えられる.データ圧縮アルゴリズムは,圧縮対象となるデータの出現構造に対し,陽に確率モデルを仮定するアルゴリズムと,陽には仮定しないアルゴリズムに分類することができる.前者にはCTW法やベイズ符号など,後者にはLZ 法やその改良法などが含まれる.圧縮アルゴリズムの性能評価は,データのサイズを伸ばしていった時に,圧縮後のファイルのサイズが,圧縮の理論限界であるエントロピーへ収束するのか,また収束する場合にはどれくらいの速さで収束するのか,によって評価される.確率モデルを陽に仮定するアルゴリズムは,エントロピーの収束速度が非常に速い代わりに,仮定した確率モデルに対してしかエントロピーへの収束を保証できない.それに対し,LZ 法などの確率モデルを陽に仮定しないアルゴリズムは,非常に広いモデルのクラスに対してエントロピーへの収束が保証できる代わりに,その収束速度は非常に遅く,有限時点での圧縮性能は必ずしも高くない.現在主流として用いられている圧縮技術のほとんどは,LZ 法をベースとした確率モデルを陽に仮定しないアルゴリズムを用いているため,汎用性は高いものの個々のファイルに対しての圧縮性能は必ずしも高いとは言えず,圧縮率の改善の余地はまだまだあると考えられる.その一方,ベイズ符号などの確率モデルを仮定するアルゴリズムに関する研究は,限られた確率モデルに対する研究しか行われておらず,実用的なデータ構造に対する研究が不十分であるため実用化には至っていない.そこで本研究では,高圧縮率である確率モデルを仮定した圧縮アルゴリズムを,実用的なデータ構造に対して適用することを目的として研究を行った.特に従来テキストデータに対して,非常に高い圧縮率を持ち,理論的最適性の保証することのできるベイズ符号を他のデータ構造に対し拡張し適用を行った.その結果,アルゴリズムを実装する際,ベイズ符号が仮定する確率モデルと,真の確率構造がことなる場合においても,ベイズ符号は一定の圧縮性能を持つ事を理論的に示すことができた.

  • 実用化に向けた高圧縮符号化アルゴリズムに関する研究


     View Summary


▼display all



▼display all