FURUZUKI, Takayuki

写真a

Affiliation

Faculty of Science and Engineering, Graduate School of Information, Production, and Systems

Job title

Professor

Homepage URL

http://www.waseda.jp/sem-hflab/

Research Institute 【 display / non-display

  • 2020
    -
    2022

    理工学術院総合研究所   兼任研究員

Education 【 display / non-display

  • 1994.04
    -
    1997.03

    Kyushu Institute of Technology   Graduate School, Division of Information Engineering   Information Science  

  • 1979.09
    -
    1983.07

    Sun Yat-Sen University   Electrical & Electronic Systems Engineering   Electronics Engineering  

  •  
     
     

    Sun Yat-Sen University   Graduate School, Division of Information Engineering   Electronics Engineering  

Degree 【 display / non-display

  • Kyushu Institute of Technology   PhD

Research Experience 【 display / non-display

  • 2008.04
    -
     

    Waseda University   Graduate School of Information Production and Systems

  • 2008.04
    -
     

    Waseda University   Graduate School of Information Production and Systems

  • 2003.04
    -
     

    Waseda University   Graduate School of Information Production and Systems

  • 1997.08
    -
     

    Kyushu University   Faculty of Information Science and Electrical Engineering

  • 1997.04
    -
     

    九州大学ベンチャー・ビジネス・ラボラトリー 非常勤研究員

display all >>

Professional Memberships 【 display / non-display

  •  
     
     

    電子情報通信学会

  •  
     
     

    電気学会

  •  
     
     

    計測自動制御学会

  •  
     
     

    IEEE

 

Research Areas 【 display / non-display

  • Life, health and medical informatics

  • Soft computing

  • Control and system engineering

  • Control and system engineering

Research Interests 【 display / non-display

  • Neural Networks, Genetic Algorithms, System Identification and Control, Complex Systems, Bioinformatics, Combinatorial optimization

Papers 【 display / non-display

  • Feature hallucination via Maximum A Posteriori for few-shot learning

    Jiaying Wu, Ning Dong, Fan Liu, Sai Yang, Jinglu Hu

    Knowledge-Based Systems   225 ( 107129 ) 1 - 10  2021.08  [Refereed]

    Authorship:Corresponding author

    DOI

  • Deep Protein Subcellular Localization Predictor Enhanced with Transfer Learning of GO Annotation

    X. Yuan, E. Pang, K. Lin, J. Hu

    IEEJ Trans. on Electrical and Electronic Engineering   16 ( 4 )  2021.04  [Refereed]

    Authorship:Corresponding author

    DOI

  • A Laplacian SVMbased Semi-Supervised Classification using Multi-LocalLinear Model

    Y. Ren, H. Zhu, Y. Tian, J. Hu

    IEEJ Trans. on Electrical and Electronic Engineering   16 ( 3 ) 455 - 463  2021.03  [Refereed]

    Authorship:Last author

    DOI

  • A Hybrid Model for Nonlinear Regression with Missing Data Using Quasi-Linear Kernel

    H. Zhu, Y. Tian, Y. Ren, J. Hu

    IEEJ Trans. on Electrical and Electronic Engineering   15 ( 12 ) 1791 - 1800  2020.12  [Refereed]

    Authorship:Corresponding author

    DOI

  • SAN: Sampling Adversarial Networks for Zero-Shot Learning

    Chenwei Tang, Yangzhu Kuang, Jiancheng Lv, Jinglu Hu

    Neural Information Processing     626 - 638  2020.11  [Refereed]

    DOI

display all >>

Books and Other Publications 【 display / non-display

  • 「進化技術ハンドブック」、第21章 21.1 自己組織化機能局在型ニューラルネットワーク、21.4 非線形多項式モデルの同定

    古月 敬之( Part: Contributor)

    近代科学社、東京  2011.11 ISBN: 9784764904187

  • Protein Structure Prediction Based on HP Model Using an Improved Hybrid EDA

    Benhui Chen, Jinglu Hu( Part: Contributor)

    Exploitation of Linkage Learning in Evolutionary Algorithms, Springer-Verlag, Berlin, Germany  2010.05 ISBN: 9783642128332

  • 「ニューラルネットワーク計算知能」、第2章 線形特性を有するニューラルネットワーク

    古月 敬之( Part: Contributor)

    森北出版株式会社, 東京  2006.09 ISBN: 4627829914

  • A Method for Applying Neural Networks to Control of Nonlinear Systems

    J.Hu, K.Hirasawa( Part: Contributor)

    Neural Information Processing Research and Development, Springer, Berlin, Germany  2004.05 ISBN: 3540211233

  • Statistical Methods for Robust Change Detection in Dynamical Systems with Model Uncertainty

    K. Kumamaru, J. Hu, K.Inoue, T. Soderstrom( Part: Contributor)

    Statistical Methods in Control and Signal Processing, Mercel Dekker Inc., New York, USA  1997.08 ISBN: 0824799488

Awards 【 display / non-display

  • ISCIIA2008 Excellent Paper Award

    2008.11  

  • 電気学会 優秀論文賞

    2001.09  

  • 広東省高教科技進歩二等賞

    1991.10  

  • 広東省高教科技進歩二等賞

    1989.10  

  • 中国教委科技成果二等賞

    1986.05  

Research Projects 【 display / non-display

  • Automatic Financial News Summary Using GPU based Deep Neural Networks

    Project Year :

    2019.11
    -
    2022.03
     

     View Summary

    本研究では、高度な関係性を抽出するための高性能な合成関係ネットワークを構築するディープラーニング技術と、GPUを用いた並列計算技術によるCNN、LSTM、GANの効率的なディープラーニングアルゴリズムの開発を行う。これをベースにして、テキスト文書の特徴抽出・関係分析により金融ニュースを解析し、Bullet Pointsに基づいた金融ニュース自動サマリーシステムの構築を行う。本研究では、ディープラーニング技術に基づいた高度な関係性を抽出することができる高性能な合成関係ネットワークの構築と、GPUを用いた並列計算技術によるCNN、LSTM、GANの効率的なディープラーニングアルゴリズムの開発を行い、さらにこれらの技術をベースにしてテキスト文書の特徴抽出・関係分析の手法の開発を行う。これにより金融等のニュースを解析し、Bullet Pointsに基づいた金融等のニュース自動サマリーシステムを構築することを目標する。この研究目標を実現するために、二つのテーマを分けて行う。テーマ①高度な関係性を抽出するための高性能な合成関係ネットワークを構築するディープラーニング技術、テーマ②GPUを用いた並列計算技術によるCNN、LSTM、GANの効率的なディープラーニングアルゴリズムの開発を行う。これを通して、金融等のニュース自動サマリーシステムを高性能化する。本年では、主として金融等の関連データベースの構築、および既存の深層学習フレームワークを利用しCNN、LSTM、GAN深層学習技術による金融等のニュース自動サマリーシステムの基本構成を行った。例えば、Word Embeddingモデル(Word2vec)、Attention技術を用いたDNNであるLSTM, CNNによるテキスト文書の特徴抽出技術、キーワードで多層パーセプトロン関係ネットワークによるトッピング検出し関連ニュースの文書抽出技術、GANという生成ネットワークによる金融等のニュースのBullet Pointsサマリーの自動生成技術の開発を行った。計画通り、CNN、LSTM、GAN深層学習技術による金融等のニュース自動サマリーシステムの基本構成を行った。 1) Word Embeddingモデル(Word2vec)、Attention技術を用いたDNNであるLSTM, CNNによるテキスト文書の特徴抽出技術、 2) キーワードで多層パーセプトロン関係ネットワークによるトッピング検出し関連ニュースの文書抽出技術、 3) GANという生成ネットワークによる融ニュースのBullet Pointsサマリーの自動生成技術の開発を行った。次年度では、構成した金融ニュース自動サマリーシステムの完成度向上と性能向上や拡張を図る。具体的に、1)より柔軟な高性能合成関係ネットワークの構築を目指して、従来のR(a,b)表現ではなく、aRb表現で類似関係モジュールと高度関係モジュールからなる合成関係ネットワークを構築し高度な関係情報の抽出を行う。2)GPUを用いたCNN、LSTM、GANの高度な並列計算技術の開発を目指して、最先端な並列計算技術を用いてCNN、LSTM、GAN効率的な並列計算アルゴリズムの開発を行う

  • Deep Quasi-Linear SVM Based on Deep Neural Network and Its Applications

    Project Year :

    2017.04
    -
    2020.03
     

     View Summary

    本研究では、回帰または分類のための利用しやすい線形構造を有する準線形サポートベクターマシン(SVM)の構成および深層ニューラルネットワークによる準線形カーネルの構築、さらに画像などのデータに直接適用できる高性能深層準線形SVM分類器の開発を行う。目指している深層準線形SVMでは、深層準線形カーネルを持っており、深層ニューラルネットワークにより深層準線形カーネルを深層学習で合成する。このように、訓練済の深層ニューラルネットワークからSVMのカーネル関数を合成し(転移学習)、このカーネルに基づいた分類器をSVM最適化(小データ)することによって、小データでも深層学習の実現が可能になる。本年度では、これまで開発した深層準線形SVMシステムの応用展開の研究を中心にして、深層準線形SVMを高速化し高性能な非線形分類器の構築を行い、画像、音声とテキストやDNA・タンパク質配列の分類・識別などの応用を行った。具体的に、1)深層準線形SVMの一つの特徴が小データでも深層学習を実現できるが、その反面SVMの計算複雑さはo(N^2~3)になるので、高次元・大規模なデータに適用するため、SVMの高速化が必要になる。そこで、小データに基づいたSVM近似分類器を導入しそれに基づいたサポートベクターになる確率高いサンプルを検出し、訓練データ再構成技術を開発し、深層準線形SVMの高速化技術の開発を行った。2)画像、音声、テキストや遺伝子機能予測のための高性能な知的分類器の構築法の開発を行い、異常検知などの応用研究を行った。さらに、深層準線形SVMの構成と応用に関する成果を取りまとめ、成果の発表を行った

  • Study on Quasi-Linear Support Vector Machine and Its Applications

    Project Year :

    2013.04
    -
    2017.03
     

     View Summary

    In this research, a quasi-linear support vector machine (SVM) is proposed. The quasi-linear SVM, on one hand, can be seen as a nonlinear SVR model with easy-to-use structure; on the other hand, it is a nonlinear SVM with data-dependent kernel, which can composed by using machine learning methods, kernel learning methods and even deep kernel learning methods. The quasi-linear SVM is applied to switching adaptive control and high-performance pattern recognition

  • 利用しやすい構造を有する準線形サポートベクターマシンの構成と応用に関する研究

    基盤研究(C)

    Project Year :

    2013
    -
    2016
     

     View Summary

    本研究では、制御系設計等に利用しやすい構造を持つ準線形ニューラルネットワークモデルを構築し、そのパラメータを推定するための体系的な学習法の確立を目指す。具体的に、回帰または分類のための利用しやすい線形構造を有する準線形サポートベクターマシン(SVM)の構築およびそのオンライ学習法の開発を行い、スイッチング適応制御法や高性能分類器の開発などへの応用研究を行っている。本年度では、
    ①SVM学習法を準線形回帰モデルの同定に適用することにより準線形SVMを構成する方式の立案を行った。具体的に、まず、準線形回帰モデリング法を活用しRBFネットワーク補間による線形化する。これにより、Nonlinear-in-natureでありながらLinear-in-parameterである準線形モデルを構築する。次に、モデルにおける線形パラメータを従来の最小二乗法の代わりにSVM学習法を適用することにより誤差最小化ではなくモデル構造リスク最小化するように推定を行った。さらに、機械学習法で合成する準線形カーネルを導入して準線形SVMを構築した。
    ②制御系設計などに利用しやすい構造を持つ準線形SVMの構成方式の立案を行った。Macro-NetとCore-Netからなる準線形回帰モデリング法を活用して、応用対象の物理の法則などの数式で表せる先見情報だけでなく、応用に望ましいネットワーク構造(例えば、制御系設計を容易にするための制御入力変数に関し線形なるようなネットワーク構造)という利用しやすい構造(Macro-Net)を取り入れることにより利用しやすい準線形回帰モデルを構成する。この利用しやすい構造を準線形SVMに継承させることにより利用しやす構造を持つ準線形SVMを実現した。
    ③準線形SVMをスイッチング適応制御への展開方式の立案を行った。

  • Study on Hierarchical and Function Localized Brain-like Systems

    基盤研究(B)

    Project Year :

    2006
    -
    2009
     

     View Summary

    Function localization and layer structure are two basic features of complex systems. In this research, we developed two hierarchical function localized brain-like systems : one is Self-organizing function localized learning system with supervised learning, unsupervised learning and reinforcement learning : the other is function localized genetic network programming. And the developed systems are applied to prediction, control and classification of complex systems

display all >>

Specific Research 【 display / non-display

  • ニューラルネットワークの学習によるSVMのためのカーネル関数の構築

    2020  

     View Summary

    サポートベクターマシン(SVM)は、マージン最大化によって優れた汎化性を持つ線形分類器として近年多くの注目を集めている。我々は、これまで分離境界線を近似するCoarse-to-FineというTwo-stepモデリング法が提案されている。そこでは、Two-stepモデリング法のCoarse-stepで、回帰ベクターの内積で定義される中間モデルを構築し、Fine-stepで、Coarse-stepで得られた中間モデルを準線形カーネル関数として利用し、マージン最大化でSVM分類器を構築する。本研究では、Autoencoder(教師なし学習)および多層パーセプトロン(教師あり学習)による中間モデルとして準線形カーネル関数の構築を行い、不均衡データにも対応できる準線形SVM分類器の構築を行った。

  • AutoEncoderによるサポートベクターマシンのためのカーネル関数の構築

    2019  

     View Summary

    サポートベクターマシン(SVM)は、マージン最大化によって優れた汎化性等の性能を持つ線形分類器として近年多くの注目を集めている。また、SVMはカーネル法によりデータを高次元特徴空間に写像することによって非線形分類問題を扱うことを可能にしている。従来のSVMではカーネル関数の形が固定されているので、分離境界線に関する先見情報があっても利用しにくいである。本研究では、機械学習による準線形カーネル関数の構築を行った。特に、データのラベル情報が利用できない場合に、教師なし学習として、スパースモデリング技術を適用したTop k% Winner-take-all AutoEncoderでSVMのためのカーネル関数の学習法を開発した。

  • 深層準線形サポートベクターマシンの高速化に関する研究

    2017  

     View Summary

     深層準線形サポートベクターマシン(SVM)では、問題毎に最適なカーネルを機械学習により構築を行っているが、従来のSVMと同じように訓練では、O(n^3)の計算量とO(n^2)の保存空間が必要であり、訓練データが増えると、訓練するための計算量と保存空間が膨大となり、小規模な訓練データを持つ問題へ適用しかできないという課題がある。深層準線形SVMを大規模な訓練データを有する問題、いわゆるビッグデータ問題に適用できるようにするため、訓練方法の高速化が必要となる。そのための方法として、1) 深層準線形SVMの訓練問題を最小包含球(Minimum Enclosing Ball: MEB)を求める問題に変換し、効率的な(1+ε)近似アルゴリズムでMEBを求めることによって、深層準線形SVMを高速化する。2) 分類境界線の付近にあるサポートベクターになる可能性の高いデータを検出し訓練データを数が大きく減らして再構成することによって準線形SVMを高速化する。今年度では、前年度の1)の開発の続き、2)の訓練データ再構成技術の開発を行った。具体的に、高次元・大規模な訓練データを有する場合の深層準線形カーネルに基づいた「高次元特徴空間における分類境界線の付近にあるデータの検出技術」と「良い特徴量の抽出機能の持つ深層準線形カーネルの合成技術」の基本構成をした。

  • 利用しやすい構造を有する準線形サポートベクターマシンの高速化に関する研究

    2016  

     View Summary

     準線形サポートベクターマシン(SVM)では、問題毎に最適なカーネルを機械学習により構築を行っているが、従来のSVMと同じように訓練では、O(n^3)の計算量とO(n^2)の保存空間が必要であり、訓練データが増えると、訓練するための計算量と保存空間が膨大となり、小規模な訓練データを持つ問題へ適用しかできないという課題がある。準線形SVMを大規模な訓練データを有する問題、いわゆるビッグデータ問題に適用できるようにするため、訓練方法の改良が必要となる。そこで、本研究では、1) 準線形SVMの訓練問題を最小包含球(Minimum Enclosing Ball:MEB)を求める問題に変換し、効率的な近似アルゴリズムでMEBを求めることによって、準線形SVMの訓練を高速化すること;2) 逐次最小問題最適化法(Sequential Minimal Optimization: SMO)を利用したMEB求める効率的なアルゴリズムを開発し、メモリー空間が膨大となる問題を解決することを目指している。今年度では、前年度の基本構成の続き、「Active Setの導入」と「2次微分情報の利用」で、より効率的な逐次最小問題最適化法(SMO)の開発の試みをした。

  • 利用しやすい構造を有する準線形サポートベクターマシンの高速化に関する研究

    2015  

     View Summary

     準線形サポートベクターマシン(SVM)では、問題毎に最適なカーネルを機械学習により構築を行っているが、従来のSVMと同じように訓練では、O(n^3)の計算量とO(n^2)の保存空間が必要であり、訓練データが増えると、訓練するための計算量と保存空間が膨大となり、小規模な訓練データを持つ問題へ適用しかできないという課題がある。本研究では、準線形SVMを大規模な訓練データを有する問題に適用できるようにするため、高速化訓練法の開発を行う。本年度では、具体的に、1)準線形SVMの訓練問題を最小包含球(MEB)の求める問題に変換し、効率的な近似アルゴリズムでMEBを求めることにより準線形SVMの高速訓練法を検討した。2)逐次最小問題最適化法を利用したMEB求めるアルゴリズムを開発し、保存空間が膨大となる問題を解決する試みをした。

display all >>

 

Syllabus 【 display / non-display

display all >>