2025/04/14 更新

写真a

ヒラタ アキヒコ
平田 秋彦
所属
理工学術院 基幹理工学部
職名
教授
学位
博士(工学) ( 早稲田大学 )

所属学協会

  •  
     
     

    日本顕微鏡学会

  •  
     
     

    日本金属学会

  •  
     
     

    The Japan Institute of Metals

研究分野

  • 金属材料物性

研究キーワード

  • 電子顕微鏡

  • 材料科学

受賞

  • Best Poster Young Researcher Presentation Award in BMGV

    2006年  

 

論文

  • Unravelling the density-driven modification of the topology generated (vol 132, pg 653, 2024)

    Shinji Kohara, Shuya Sato, Motoki Shiga, Yohei Onodera, Hirokazu Masai, Toru Wakihara, Atsunobu Masuno, Akihiko Hirata, Naoto Kitamura, Yasushi Idemoto, Koji Kimura, Koichi Hayashi

    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN   133 ( 2 ) 65 - 65  2025年02月

    DOI

  • Unravelling the density-driven modification of the topology generated by the interconnection of SiO4 tetrahedra in silica polymorphs

    Shinji Kohara, Shuya Sato, Motoki Shiga, Yohei Onodera, Hirokazu Masai, Toru Wakihara, Atsunobu Masuno, Akihiko Hirata, Naoto Kitamura, Yasushi Idemoto, Koji Kimura, Koichi Hayashi

    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN   132 ( 12 ) 653 - 662  2024年10月

     概要を見る

    The topology of materials is an important structural feature, which cannot be determined from crystallographic information in crystalline materials and pairwise correlations in disordered materials. We extracted the densitydriven modification of the topology of tetrahedral silica (SiO2) crystals, siliceous zeolites (MFI, SOD, and FAU), and glass on the basis of the results of ring size, homology, cavity distribution, and tetrahedral order analyses. A series of analyses confirmed a universal feature that oxygen atoms are buckled in -Si-O- rings except in some symmetrical even-numbered rings such as twelvefold (Si-O)12 rings in coesite and SOD/FAU. In addition, large cavities were found in /3-cristobalites and siliceous zeolites, whose cavity volume ratios are much higher than that of SiO2 glass. A comparison between <inverted exclamation>- and /3-cristobalite indicated that the arrangement of oxygen atoms governs the formation of cavities. Moreover, a topological similarity between glass and MFI was found, in which fivefold and sevenfold rings are observed in the King ring size distribution. This feature can break their symmetry because these odd-number rings are not observed in other SiO2 polymorphs. Moreover, it was suggested that SiO2 glass is crystallographically an analogue to /3-cristobalite in terms of the position of the diffraction peak, but topologically an analogue to MFI. It is demonstrated that the topological analyses provide us with crucial information for the design of novel nonequilibrium materials at high pressures and/or high temperatures by tuning density.

    DOI

    Scopus

  • Local structural modelling and local pair distribution function analysis for Zr-Pt metallic glass

    Akihiko Hirata, Satoru Tokuda, Chihiro Nakajima, Siyuan Zha

    SCIENTIFIC REPORTS   14 ( 1 )  2024年06月

     概要を見る

    In disordered glass structures, the structural modelling and analyses based on local experimental data are not yet established. Here we investigate the icosahedral short-range order (SRO) in a Zr-Pt metallic glass using local structural modelling, which is a reverse Monte Carlo simulation dedicated to two-dimensional angstrom-beam electron diffraction (ABED) patterns, and local pair distribution function (PDF) analysis. The local structural modelling invariably leads to the icosahedral SRO atomic configurations that are similarly distorted by starting from some different initial configurations. Furthermore, the SRO configurations with 11-13 coordination numbers reproduce almost identical ABED patterns, indicating that these SRO structures are similar to each other. Further local PDF analysis explicitly indicates the presence of the wide distribution of atomic bond distances, which is comparable to the global PDF profile, even at the SRO level. The SRO models based on the conventional MD simulation can be strengthened by comparison with those obtained by the present local structural modelling and local PDF analysis based on the ABED data.

    DOI

    Scopus

  • Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass

    Akihiko Hirata, Shuya Sato, Motoki Shiga, Yohei Onodera, Koji Kimoto, Shinji Kohara

    NPG ASIA MATERIALS   16 ( 1 )  2024年05月

     概要を見る

    The intermediate-range order of covalently bonded glasses has been extensively studied in terms of their diffraction peaks observed at low scattering angles; these peaks are called the first sharp diffraction peaks (FSDPs). Although the atomic density fluctuations originating from the quasilattice planes are a critical scientific target, direct experimental observations of these fluctuations are still lacking. Here, we report the direct observation of the atomic density fluctuations in silica glass by energy-filtered angstrom-beam electron diffraction. The correspondence between the local electron diffraction patterns of FSDPs and the atomic configurations constructed based on the X-ray and neutron diffraction results revealed that the local atomic density fluctuations originated from the quasi-periodic alternating arrangements of the columnar chain-like atomic configurations and interstitial tubular voids, as in crystals. We also discovered longer-range fluctuations associated with the shoulder of the FSDP on the low-Q side. The hierarchical fluctuations inherent in materials could aid in the elucidation of their properties and performance.

    DOI

    Scopus

    2
    被引用数
    (Scopus)
  • Molecular Dynamics Simulation of Diffusion Behavior in Liquid Sn and Pb

    Masato Shiinoki, Akihiko Hirata, Shinsuke Suzuki

    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE   55 ( 1 ) 446 - 460  2024年02月

     概要を見る

    This study aimed to clarify the effect of a unique structure with a "shoulder," which represents a hump on the high wave vector side of the first peak of static structure factor, in liquid Sn (liq-Sn) on the self-diffusion behavior through molecular dynamics (MD) simulation. The MD simulations of liq-Sn at 573 K and liquid Pb (liq-Pb) at 773 K were performed for comparison. The former and latter were selected as element with and without shoulder structure and reliable self-diffusion coefficients in liquid have been measured in both elements. The calculated self-diffusion coefficients of liq-Sn and liq-Pb were reproduced as the same order of magnitude with the referred reliable data of diffusion coefficients, which were obtained by experiments on the ground. The microscopic diffusion behavior of liq-Sn is unlike that of the hard-sphere model because the atoms become sluggish in the range that corresponds to the shoulder appearing in the pair distribution function of liq-Sn as well as in the structure factor of liq-Sn based on the local atomic configurations and time-series analyses of individual atoms. Therefore, the velocity autocorrelation function (VACF) converges to zero more rapidly than that of liq-Pb, and it is reproduced by the hard-sphere model. However, the macroscopic diffusion behavior of liq-Sn expressed by the self-diffusion coefficient is the same as that of the hard-sphere model with the non-correlation of the VACF in the long time.

    DOI

    Scopus

▼全件表示

Works(作品等)

  • 融体・金属ガラスの局所原子構造のその場観察

    2005年
    -
     

  • 気相急冷による硬質磁性合金ナノ粒子の形成と電子線構造解析ならびに磁性評価

    2005年
    -
     

  • 急相急冷による硬質磁性合金ナノ粒子の形成と電子線構造解析ならびに磁性評価

    2004年
    -
     

共同研究・競争的資金等の研究課題

  • -

Misc

  • Structural analysis of polycrystalline BiFeO3 films by transmission electron microscopy

    Hiroshi Naganuma, Andras Kovacs, Akihiko Hirata, Yoshihiko Hirotsu, Soichiro Okamura

    MATERIALS TRANSACTIONS   48 ( 9 ) 2370 - 2373  2007年09月

     概要を見る

    A multiferroic polycrystalline BiFeO3 film has been fabricated by a chemical solution deposition followed by the post deposition annealing at 823 K in air. The nanostructure of the BiFeO3 film was characterized by transmission electron microscopy (TEM). The nano-beam electron diffraction and the fast Fourier transform pattern image from the high resolution TEM image were compared with the electron diffraction patterns of the multislice simulation, and it was revealed that the BiFeO3 has R3c rhombohedral structure. Formation of any additional phase or phases was not found in the sample. The BiFeO3 film shows the small saturation magnetization of 5.2emu/cm(3) without spontaneous magnetization at room temperature, which behavior is typical for the weak ferromagnetic materials. The ferroelectric hysteresis loop of the BiFeO3 film was measured at low temperature in order to reduce the leakage current. The remanent polarization and the electric coercive field at 90 K were 52 mu C/cm(2) and 0.51 MV/cm at an applied electric field of 1.4 MV/cm, respectively. The structure-magnetic properties relationship is also discussed.

    DOI

  • Voronoi analysis of the structure of Ni-Zr-Al ternary metallic glass

    T. Fukunaga, K. Itoh, T. Otomo, K. Mori, A. Sugiyama, H. Kato, A. Hasegawa, A. Hirata, Y. Hirotsu, A. C. Hannon

    MATERIALS TRANSACTIONS   48 ( 7 ) 1698 - 1702  2007年07月

     概要を見る

    Ni-Zr metallic glasses have been recognized to be unstable in comparison with Cu-Zr metallic glasses. An analysis of Voronoi polyhedra in the RMC simulations based on the diffraction data could characterize the atomic configurations around Ni and Cu atoms. The polyhedra around Ni atoms are dominated by trigonal prisni-like, Archimedian antiprism-like, and similar polyhedra. In contrast. icosahedron-like polyhedra are preferred for Cu. The Ni-Zr glasses have been reported to stabilize by adding Al. Therefore, in this work, the analysis of Voronoi polyhedra around Ni, Zr and Al atoms for Ni25Zr60Al15 ternary metallic glass was carried out in order to clarify the difference between the atomic structures for the binary and ternary metallic glasses. Trigonal prism-like, Archimedian antiprism-like and similar polyhedra, which are dominated in the Ni-Zr metallic glasses, decreased in number by adding Al to the Ni-Zr system. On the contrary, the number of icosaliedron-like polyhedra was found to increase. The results apparently indicate that the addition of Al into Ni-Zr binary system promote the formation of icosahedron-like polyhedra in the structure. Therefore, from these results. we can easily recognize that icosahedron-like polyhedra play an important role to stabilize the structure of metallic glasses.

    DOI

  • Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction

    Akihiko Hirata, Takuro Morino, Yoshihiko Hirotsu, Keiji Itoh, Toshiharu Fukunaga

    MATERIALS TRANSACTIONS   48 ( 6 ) 1299 - 1303  2007年06月

     概要を見る

    Local atomic structures in Zr66.7CU33.3 and Zr66.7CU33.3 metallic glasses were examined by using nanobeam electron diffraction (NBED), energy-filtered selected area electron diffraction (SAED) and high-resolution electron microscopy (HREM). Locally ordered regions of atomic medium range order (MRO) were observed in both of the specimens by NBED, although it was difficult to recognize the regions using HREM. Statistical analyses for NBED patterns revealed such a difference in the extended MRO regions between the specimens that the MRO Structure in Zr66.7CU33.3 is more complex with a large dispersion of interplanar spacings than those in Zr66.7CU33.3. To understand nearest-neighbor atomic coordination, we performed electron intensity analyses using energy-filtered SAED patterns and constructed structure models including about 5000 atoms with the help of reverse Monte Carlo simulation. The nearest-neighbor atomic environments around Ni atoms in Zr66.7Ni33.3 are also different from those around Cu atoms in Zr66.7CU33.3, consistent with the NBED study. The local structural difference between the two glasses was discussed in relation to their glass-forming abilities.

    DOI

  • Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction

    Akihiko Hirata, Takuro Morino, Yoshihiko Hirotsu, Keiji Itoh, Toshiharu Fukunaga

    Materials Transactions   48 ( 6 ) 1299 - 1303  2007年06月

     概要を見る

    Local atomic structures in Zr66.7Ni33.3 and Zr 66.7Cu33.3 metallic glasses were examined by using nanobeam electron diffraction (NBED), energy-filtered selected area electron diffraction (SAED) and high-resolution electron microscopy (HREM). Locally ordered regions of atomic medium range order (MRO) were observed in both of the specimens by NBED, although it was difficult to recognize the regions using HREM. Statistical analyses for NBED patterns revealed such a difference in the extended MRO regions between the specimens that the MRO structure in Zr 66.7Ni33.3 is more complex with a large dispersion of interplanar spacings than those in Zr66.7Cu33.3. To understand nearest-neighbor atomic coordination, we performed electron intensity analyses using energy-filtered SAED patterns and constructed structure models including about 5000 atoms with the help of reverse Monte Carlo simulation. The nearest-neighbor atomic environments around Ni atoms in Zr66.7Ni 33.3 are also different from those around Cu atoms in Zr 66.7Cu33.3, consistent with the NBED study. The local structural difference between the two glasses was discussed in relation to their glass-forming abilities. ©2007 The Japan Institute of Metals.

    DOI

  • Direct imaging of local atomic ordering in a Pd-Ni-P bulk metallic glass using C-s-corrected transmission electron microscopy

    Akihiko Hirata, Yoshihiko Hirotsu, T. G. Nieh, Tadakatsu Ohkubo, Nobuo Tanaka

    ULTRAMICROSCOPY   107 ( 2-3 ) 116 - 123  2007年02月

     概要を見る

    In amorphous alloys, crystalline atomic clusters as small as 1-2nm are frequently observed as local lattice fringe images by high-resolution electron microscopy (HREM). These clusters can be understood as local structures of amorphous alloys corresponding to "medium-range-order (MRO)". The MRO structure can be observed only under suitable defocusing conditions of the objective lens in HREM. A clear imaging of the MRO structure is difficult in conventional TEMs, mainly due to the delocalization of the image, caused mainly by the spherical aberration of the objective lens and eventually by the chosen defocus. In the present study, we have examined MRO in a Pd-based bulk metallic glass (Pd40Ni40P20) using a high-resolution TEM (acceleration voltage 200 kV) fitted with a spherical aberration constant corrector (C, corrector) for aberration correction. We found that when C, was close to zero and defocus values were near the Gaussian focus, MRO regions with an FCC-Pd structure could be clearly observed with a low image disturbance. Under these conditions, the phase-contrast transfer function was understood to act as an ideal filter function, which distinctly selects specific lattice periods of the FCC-Pd clusters. The obtained atomic images of the glass structure including the FCC-Pd clusters are in good agreement with those expected from image simulation according to our amorphous structure model. In this study, we have demonstrated that the C-s-corrected HREM is a powerful tool to directly image locally ordered structures in metallic glasses. (c) 2006 Elsevier B.V. All rights reserved.

    DOI

▼全件表示

 

現在担当している科目

▼全件表示

 

他学部・他研究科等兼任情報

  • 理工学術院   大学院基幹理工学研究科

学内研究所・附属機関兼任歴

  • 2022年
    -
    2024年

    理工学術院総合研究所   兼任研究員

特定課題制度(学内資金)

  • アモルファス系電池用材料の局所原子配列と充放電機構

    2020年  

     概要を見る

    次世代のリチウムイオン電池の負極材として期待されているアモルファスシリコンに関して、その充放電機構の理解へ向け、アモルファスの局所構造、特にこれまで不明な点が多かった中距離秩序構造の解明を試みた。本研究では、回折実験を再現するアモルファスシリコンの構造モデルを分子動力学法に作製し、幾何学的手法であるボロノイ多面体解析を用いて特に第2近接配位に関する解析を行った。その結果、中距離秩序構造を特徴づけるボロノイ指数が見いだされ、それらと関連結晶相の構造の比較も行った。今後、シリコンの電池利用において、充放電時における構造変化の理解のために、本研究で提案した解析は有用な手法であると思われる。